Skip to main content
Log in

A new β-glucosidase gene from the zygomycete fungus Rhizomucor miehei

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

In this study, a β-glucosidase coding gene (bgl) of the zygomycete fungus Rhizomucor miehei has been cloned and characterized. The gene comprises a total of 2,826 bp including the coding sequence of a 717 amino acids length putative protein and 10 introns dispersed in the whole coding region. The putative N-and C-terminal catalytic domains (aa 68 to aa 274 and aa 358–601, respectively) were identified; the two domains are connected with a 84-amino-acids linker. The catalytic region showed an extensive sequence homology with other fungal β-glucosidases classified as family 3 glycoside hydrolases. The isolated Rhizomucor gene was expressed in the related fungus Mucor circinelloides. Transformant Mucor strains maintained the introduced plasmid in an autoreplicative manner and showed significantly higher cellobiase activity than the recipient strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Benito EP, Díaz-Mínguez JM, Itturiaga EA, Campuzano EA, Eslava AP (1992) Cloning and sequence analysis of the Mucor circinelloides pyrG gene encoding orotidine-5′-monophosphate decarboxylase: use of pyrG for homologous transformation. Gene 116:59–67

    Article  CAS  PubMed  Google Scholar 

  • Bhatia Y, Mishra S, Bisaria VS (2002) Microbial β-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol 22:375–407

    Article  CAS  PubMed  Google Scholar 

  • Borgia P, Mehnert D (1982) Purification of a soluble and a wall-bound form of β-glucosidase from Mucor racemosus. J Bacteriol 145:515–522

    Google Scholar 

  • Chir J, Withers S, Wan C-F, Li Y-K (2002) Identification of the two essential groups in the family 3 β-glucosidase from Flavobacterium meningosepticum by labelling and tandem mass spectrometric analysis. Biochem J 365:857–863

    CAS  PubMed  Google Scholar 

  • Do CB, Mahabhashyam MSP, Brudno M, Batzoglou S (2005) PROBCONS: probabilistic consistency-based multiple sequence alignment. Genome Res 15:330–340

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy Server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Clifton, pp 571–607

    Chapter  Google Scholar 

  • Harvey AJ, Hrmova M, De Gori R, Varghese JN, Fincher GB (2000) Comparative modelling of the three-dimensional structures of family 3 glycoside hydrolases. Proteins 41:257–269

    Article  CAS  PubMed  Google Scholar 

  • Hellman U, Wernstedt C, Gonez J, Heldin CH (1995) Improvement of an “In-Gel” digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal Biochem 224:451–455

    Article  CAS  PubMed  Google Scholar 

  • Hrmova M, Varghese JN, De Gori R, Smith BJ, Driguez H, Fincher GB (2001) Catalytic mechanisms and reaction intermediates along the hydrolytic pathway of a plant β-d-glucan glucohydrolase. Structure 9:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Iturriaga EA, Díaz-Mínguez JM, Benito EP, Álvarez MI, Eslava AP (1992) Heterologous transformation of Mucor circinelloides with the Phycomyces blakesleeanus leu1 gene. Curr Genet 21:215–223

    Article  CAS  PubMed  Google Scholar 

  • Lukács Gy, Papp T, Somogyvári F, Csernetics Á, Nyilasi I, Vágvölgyi Cs (2009) Cloning of the Rhizomucor miehei 3-hydroxy-3-methylglutaryl-coenzyme A reductase gene and its heterologous expression in Mucor circinelloides. Antonie Leeuwenhoek 95:55–64

    Article  PubMed  Google Scholar 

  • Maheshwari R, Bharadwaj G, Mahalingeshwara K (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488

    Article  CAS  PubMed  Google Scholar 

  • Nagy Á, Vágvölgyi Cs, Balla É, Ferenczy L (1994) Electrophoretic karyotype of Mucor circinelloides. Curr Genet 26:45–48

    Article  CAS  PubMed  Google Scholar 

  • Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623

    CAS  PubMed  Google Scholar 

  • Outtrup H, Boyce COL (1990) Microbial proteinases and biotechnology. In: Fogarty WM, Kelly CT (eds) Microbial enzymes and biotechnology. Elsevier, London, pp 227–254

    Google Scholar 

  • Pagni M, Ioannidis V, Cerutti L, Zahn-Zabal M, Jongeneel CV, Hau J, Martin O, Kuznetsov D, Falquet L (2007) MyHits: improvements to an interactive resource for analyzing protein sequences. Nucleic Acids Res 35(Web Server issue):W433–W437

    Google Scholar 

  • Papp T, Velayos A, Bartók T, Eslava AP, Vágvölgyi Cs, Iturriaga EA (2006) Heterologous expression of astaxanthin biosynthesis genes in Mucor circinelloides. Appl Microbiol Biotechnol 69:526–531

    Article  CAS  PubMed  Google Scholar 

  • Petruccioli M, Brimer L, Cicalini AR, Federici F (1999) The linamarase of Mucor circinelloides LU M40 and its detoxifying activity on cassava. J Appl Microbiol 86:302–310

    Article  CAS  Google Scholar 

  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635

    CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Schipper MAA (1978) On the genera Rhizomucor and Parasitella. Stud Mycol 17:53–71

    Google Scholar 

  • Somkuti GA, Babel FJ, Somkuti AC (1969) Cellulolysis by Mucor pusillus. Appl Microbiol 17:888–892

    CAS  PubMed  Google Scholar 

  • Suto M, Tomita F (2001) Induction and catabolite repression mechanism of cellulose in fungi. J Biosci Bioeng 92:305–311

    Article  CAS  PubMed  Google Scholar 

  • Takii Y, Ikeda K, Sato C, Yano M, Sato T, Konno H (2005) Production and characterization of β-glucosidase from Rhizopus oryzae MIBA348J. Biol Macromol 5:11–16

    Article  CAS  Google Scholar 

  • Vágvölgyi Cs, Vastag M, Ács K, Papp T (1999) Rhizomucor tauricus: a questionable species of the genus. Mycol Res 103:1318–1322

    Article  Google Scholar 

  • van Heeswijck R, Roncero MIG (1984) High frequency transformation of Mucor with recombinant plasmid DNA. Carlsberg Res Commun 49:691–702

    Article  Google Scholar 

  • Varghese JN, Hrmova M, Fincher GB (1999) Three-dimensional structure of a barley beta-d-glucan exohydrolase, a family 3 glycosyl hydrolase. Structure 7:179–190

    Article  CAS  PubMed  Google Scholar 

  • Vastag M, Papp T, Zs Kasza, Vágvölgyi Cs (1998) Differentiation of Rhizomucor species by carbon source utilization and isoenzyme analysis. J Clin Microbiol 36:2153–2156

    CAS  PubMed  Google Scholar 

  • Velayos A, López-Matas MA, Ruiz-Hidalgo MJ, Eslava AP (1997) Complementation analysis of carotenogenic mutants of Mucor circinelloides. Fung Genet Biol 22:19–27

    Article  CAS  Google Scholar 

  • Voigt K, Cigelnik E, O’Donnell K (1999) Phylogeny and PCR identification of clinically important zygomycetes based on nuclear ribosomal-DNA sequence data. J Clin Microbiol 37:3957–3964

    CAS  PubMed  Google Scholar 

  • Wolff AM, Arnau J (2002) Cloning of glyceraldehyde-3-phosphate dehydrogenase-encoding genes in Mucor circinelloides (syn. racemosus) and use of the gpd1 promoter for recombinant protein production. Fung Genet Biol 35:21–29

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the ETT 214/2006 grant of the Hungarian Medical Research Council. We wish to thank the Proteomics Research Group at the Biological Research Center of the Hungarian Academy of Sciences for the LC–MS analysis of the BGL protein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Papp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takó, M., Tóth, A., G. Nagy, L. et al. A new β-glucosidase gene from the zygomycete fungus Rhizomucor miehei . Antonie van Leeuwenhoek 97, 1–10 (2010). https://doi.org/10.1007/s10482-009-9382-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-009-9382-z

Keywords

Navigation