Skip to main content
Log in

Characterization of the beneficial properties of lactobacilli isolated from bullfrog (Rana catesbeiana) hatchery

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The present work addresses the isolation and partial identification of the microbial population of a R. catesbeiana hatchery in spring and summer as well as some beneficial properties of Lactobacillus strains isolated in different seasons and hatchery areas. The bacterial population was grouped into the following taxa: Lactobacillus spp., Pediococcus spp., Enterococcus faecalis and Ent. faecium, and Enterobacteriaceae (Enterobacter spp., Escherichia coli) while Pseudomonas aeruginosa and Staphylococcus epidermidis were isolated from frogs displaying red-leg syndrome. The Lactobacillus plantarum and L. curvatus strains isolated showed to inhibit the growth of red-leg syndrome associated pathogens and food-borne bacteria by organic acids. While L. plantarum CRL 1606 also inhibited red-leg syndrome related pathogens by hydrogen peroxide, meat spoilage bacteria were only inhibited by acidity. However, by using a MRS medium added with tetramethyl-benzidine and peroxidase, a high percentage of H2O2-producing lactobacilli were detected. The surface properties of Lactobacillus strains showed that a few strains were able to agglutinate ABO human erythrocytes, while the highest number of strains had a low to medium degree of hydrophobicity. This paper constitute the first study related to the beneficial properties of Lactobacillus isolated from a bullfrog hatchery, as well as the selection criteria applied to a group of strains, which could help to control or prevent bacterial infectious diseases in raniculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashhurst DE (1956) Red blood-cell antigens in some lower vertebrates. J Exp Biol 33:249–255

    Google Scholar 

  • Balcázar JL, de Blas I, Ruiz-Zarzuela I, Cunnigham D, Vendrell D, Múzquiz JL (2006) The role of probiotics in aquaculture. Vet Microbiol 114:173–186. doi:10.1016/j.vetmic.2006.01.009

    Article  PubMed  Google Scholar 

  • Balding P, Gold ER (1976) The natural heterohaemagglutinin in the serum of the toad Bufo regularis, and its relationship to lower vertebrate immunoglobulins. Immunology 30:769–777

    PubMed  CAS  Google Scholar 

  • Bühler MI, Sánchez Toranzo G, Zaltz S (2000) La ranicultura: una alternativa productiva. Top Graph (Ed.), Argentina

    Google Scholar 

  • de Carla Dias D, de Paiva Badiz Furlaneto F, da Silva Ayroza LM, Menezes França F, Maris Ferreira C, de Verardino Stéfani M (2007) Estudo da viabilidade económica do uso de probiótico na alimentação da rã-touro, Rana catesbeiana. Informações Econômicas 37(3):7–13

    Google Scholar 

  • de Man JC, Rogosa M, Sharpe E (1969) A medium for cultivation of lactobacilli. J Appl Bacteriol 23:130–145

    Google Scholar 

  • Draksler D, González S, Oliver G (2004) Preliminary assays for the development of a probiotic for goat. Reprod Nutr Dev 44:397–405. doi:10.1051/rnd:2004046

    Article  PubMed  Google Scholar 

  • FAO/WHO (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. www.fao.org

  • Farzanfar A (2006) The use of probiotics in shrimp aquaculture. A minireview. FEMS Immunol Med Microbiol 48:149–158. doi:10.1111/j.1574-695X.2006.00116.x

    Article  PubMed  CAS  Google Scholar 

  • Ferreira R, de Souza Fonseca L, Muñiz Afonso A, Gomes da Silva M, Saad ME, Lilenbaum W (2006) A report of mycobacteriosis caused by Mycobacterium marinum in bullfrogs (Rana catesbeiana). Vet J 171:177–180. doi:10.1016/j.tvjl.2004.08.018

    Article  PubMed  Google Scholar 

  • Gatesoupe FJ (1999) The use of probiotics in aquaculture. Aquaculture 180:147–165. doi:10.1016/S0044-8486(99)00187-8

    Article  Google Scholar 

  • Glorioso JC, Amborsky RL, Amborsky GF, Culley DD (1974) Microbiological studies on septicemic bullfrogs (Rana catesbeiana). Am J Vet Res 35(8):1241–1245

    PubMed  CAS  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley J, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Irianto A, Austin B (2002) Probiotics for aquaculture: a review. J Fish Dis 25:633–642. doi:10.1046/j.1365-2761.2002.00422.x

    Article  Google Scholar 

  • Juárez Tomás MS, Ocaña V, Wiesse B, Nader-Macías ME (2003) Growth and lactic acid production by vaginal Lactobacillus acidophilus CRL 1259. Inhibition of uropathogenic Escherichia coli. J Med Microbiol 52:1117–1124. doi:10.1099/jmm.0.05155-0

    Article  PubMed  CAS  Google Scholar 

  • Juárez Tomás MS, Otero MC, Ocaña VS, Nader-Macías ME (2004) Production of antimicrobial substances in lactic acid bacteria. Determination of hydrogen peroxide. In: Spencer JFT, de Ragout Spencer AL (eds) Methods in molecular biology. Public health microbiology: methods and protocols, vol 268. Humana Press Inc., Totowa, pp 337–346

    Google Scholar 

  • Kullisaar T, Zilmer M, Mikelsaar M, Vihalemm T, Kairane C, Kilk A (2002) Two antioxidative lactobacilli strains as promising probiotics. Int J Food Microbiol 72(3):215–224. doi:10.1016/S0168-1605(01)00674-2

    Article  PubMed  CAS  Google Scholar 

  • Lara-Flores M, Olvera-Novoa MA, Guzman-Mendez BE, Lopez-Madrid W (2003) Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus). Aquaculture 216:193–201. doi:10.1016/S0044-8486(02)00277-6

    Article  Google Scholar 

  • Ljungh A, Wadstrom T (2006) Lactic acid bacteria as probiotics. Curr Issues Intest Microbiol 7(2):73–79

    PubMed  CAS  Google Scholar 

  • Madigan M, Martinko J, Parker J (2006) Brock biology of microorganisms. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Mauel MJ, Miller DL, Frazier KS, Hines MEII (2002) Bacterial pathogens isolated from cultured bullfrog (Rana catesbeiana). J Vet Diagn Invest 14(5):431–433

    PubMed  Google Scholar 

  • Montel Mendoza G, Ale CE, Pasteris SE, Otero MC, Bühler MI, Nader-Macías ME (2008) Study of the microbiota in a Rana catesbeiana hatchery in autumn (abstract). Biocell (in press)

  • Naaber P, Smidt I, Stsepetova J, Brilene T, Annuk H, Mikelsaar M (2004) Inhibition of Clostridium difficile strains by intestinal Lactobacillus species. J Med Microbiol 53(6):551–554. doi:10.1099/jmm.0.45595-0

    Article  PubMed  Google Scholar 

  • Nikoskelainen S, Ouwehand A, Salminen S, Bylund G (2001a) Protection of rainbow trout (Oncorhynchus myckiss) from furunculosis by Lactobacillus rhamnosus. Aquaculture 198:229–236. doi:10.1016/S0044-8486(01)00593-2

    Article  Google Scholar 

  • Nikoskelainen S, Salminen S, Bylund G, Ouwehand A (2001b) Characterization of the properties of human- and dairy-derived probiotics for prevention of infectious diseases in fish. Appl Environ Microbiol 67(6):2430–2435. doi:10.1128/AEM.67.6.2430-2435.2001

    Article  PubMed  CAS  Google Scholar 

  • Ocaña VS, Bru E, de Ruizz Holgado AAP, Nader-Macias ME (1999) Surface characteristics of lactobacilli isolated from human vagina. J Gen Appl Microbiol 45:203–212. doi:10.2323/jgam.45.203

    Article  PubMed  Google Scholar 

  • Ofek I, Doyle R (1994) Methods, models and analysis of bacterial adhesion. In: Bacterial adhesion to cells and tissues. Chapman and Hall, New York, pp 16–20

  • Otero MC, Nader-Macias ME (2006) Inhibition of Staphylococcus aureus by H2O2-producing Lactobacillus gasseri isolated from the vaginal tract of cattle. Anim Reprod Sci 96(1–2):35–46. doi:10.1016/j.anireprosci.2005.11.004

    Article  PubMed  CAS  Google Scholar 

  • Otero C, Saavedra L, Silva de Ruiz C, Wilde O, Holgado AR, Nader-Macías ME (2000) Vaginal bacterial microflora modifications during the growth of healthy cows. Lett Appl Microbiol 31(3):251–254. doi:10.1046/j.1365-2672.2000.00809.x

    Article  PubMed  CAS  Google Scholar 

  • Pasteris SE, Bühler MI, Nader-Macías ME (2006) Microbiological and histological studies in farmed-bullfrog (Rana catesbeiana) displaying red-leg syndrome. Aquaculture 251:11–18. doi:10.1016/j.aquaculture.2005.05.007

    Article  Google Scholar 

  • Pasteris SE, González A, Van Schoor A, Bühler MI, Nader-Macías ME, Vandamme P, De Vuyst L (2008) Genotypic identification of lactic acid bacteria from a Rana catesbeiana hatchery. V Argentinean Congress of General Microbiology (SAMIGE). Santa Fé, Argentina

    Google Scholar 

  • Raibaud P, Galpin JV, Ducluzeau R, Mocquot G, Oliver G (1963) Le genre Lactobacillus dans le tube digestif du rat. II Caractères de souches heterofermentaires isolates de rats “Holo” et “Gnotoxeniques”. Ann Microbiol (Annales de L’ Institut Pasteur) 124:2223–2235

    Google Scholar 

  • Reid G, Sanders ME, Rex Gaskins H, Gibson GR, Mercenier A, Rastall R, Roberfroid M, Rowland I, Cherbut C, Klaenhammer TR (2003) New scientific paradigms for probiotics and prebiotics. J Clin Gastroenterol 37(2):105–118. doi:10.1097/00004836-200308000-00004

    Article  PubMed  Google Scholar 

  • Reid G, Kim SO, Kohler GA (2006) Selecting, testing and understanding probiotic microorganisms. FEMS Immunol Med Microbiol 46:149–157. doi:10.1111/j.1574-695X.2005.00026.x

    Article  PubMed  CAS  Google Scholar 

  • Reuter G (1992) Culture media for enterococci and group D-streptococci. Int J Food Prot 17:101–111

    Article  CAS  Google Scholar 

  • Ringø E, Gatesoupe FJ (1998) Lactic acid bacteria in fish: a review. Aquaculture 160:177–203. doi:10.1016/S0044-8486(97)00299-8

    Article  Google Scholar 

  • Ringø E, Schillinger U, Holzapfel W (2005) Antimicrobial activity of lactic acid bacteria isolated from aquatic animals and the use of lactic acid bacteria in aquaculture. In: Hotzapfel WH, Naughton PJ, Pierzynowski SG, Zabielski R (eds) Microbial ecology of the growing animal. Biology in growing animal series. Elsevier, Oxford, pp 408–443

    Google Scholar 

  • Ringø E, Salinas I, Olsen RE, Nyhaug A, Myklebust R, Mayhew TM (2007) Histological changes in intestine of Atlantic salmon (Salmo salar L.) following in vitro exposure to pathogenic and probiotic bacterial strains. Cell Tissue Res 328(1):109–116. doi:10.1007/s00441-006-0323-0

    Article  PubMed  Google Scholar 

  • Romalde JL, Ravelo C, López-Romalde S, Avendaño-Herrera R, Magariños B, Toranzo AE (2005) Vaccination strategies to prevent emerging diseases for Spanish aquaculture. Dev Biol (Basel) 121:85–95

    CAS  Google Scholar 

  • Rosenberg M, Doyle RJ (1990) Microbial cell surface hydrophobicity: History, measurement, and significance. In: Doyle RJ, Rosenberg M (eds) Microbial cell surface hydrophobicity. ASM, Washington, pp 1–38

    Google Scholar 

  • Rossman AJ, Chance BL (1998) Workshop statistics: discovery with data and Minitab. Springer, New York

    Google Scholar 

  • Savage DC, Kotarski SF (1979) Models for study the specificity by which lactobacilli adhere to murine gastric epithelium. Infect Immun 26:966–975

    PubMed  Google Scholar 

  • Strasser de Saad AM, Pasteris SE, Manca de Nadra MC (1995) Production and stability of pediocin N5p in grape juice medium. J Appl Bacteriol 78:473–476

    PubMed  CAS  Google Scholar 

  • Texeira RD, Pereira Mello SCR, Lima dos Santos CAM (2002) The world market for frog legs, vol 68. FAO/Globefish Research Programme, Rome, pp 1–44

    Google Scholar 

  • Vázquez JA, González MP, Murado MA (2005) Effect of lactic acid bacteria cultures on pathogenic microbiota from fish. Aquaculture 245:149–161. doi:10.1016/j.aquaculture.2004.12.008

    Article  Google Scholar 

  • Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64:655–671. doi:10.1128/MMBR.64.4.655-671.2000

    Article  PubMed  CAS  Google Scholar 

  • Vine NG, Leukes WD, Kaiser H (2006) Probiotics in marine larviculture. FEMS Microbiol Rev 30:404–427. doi:10.1111/j.1574-6976.2006.00017.x

    Article  PubMed  CAS  Google Scholar 

  • Zoetendal EG, Rajilic-Stojanovic M, de Vos WM (2008) High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57(11):1605–1615. doi:10.1136/gut.2007.133603

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PIP 6248 and Consejo de Investigaciones de la Universidad Nacional de Tucumán (CIUNT), D-344. The authors wish to thank David A. Housel, ACSW for proofreading and revising the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María E. Nader-Macías.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasteris, S.E., Vera Pingitore, E., Roig Babot, G. et al. Characterization of the beneficial properties of lactobacilli isolated from bullfrog (Rana catesbeiana) hatchery. Antonie van Leeuwenhoek 95, 373–385 (2009). https://doi.org/10.1007/s10482-009-9329-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-009-9329-4

Keywords

Navigation