Skip to main content
Log in

Changes in growth competence of aged Trichoderma viride vegetative mycelia

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Identical masses of submerged Trichoderma viride mycelia of various ages were used as inoculum for a second submerged cultivation lasting for 24 h. It was found that the growth yield of secondary culture was dependent on the age of inoculum. The growth yields increased when the age of primary culture was less than 3 d, and decreased down to zero when older mycelia were inoculated. The mycelia were living even after 1 month of submerged cultivation, as they formed conidia after inoculating onto solid medium. In order to elucidate underlying biochemical processes, developmental changes of specific activities of organellar marker enzymes were measured in the mitochondrial/vacuolar and microsomal fractions of mycelia. These activities changed during the growth of mycelia in a biphasic manner and their time courses were remarkably similar. Only the H+-ATPase activity decreased monophasically with the age of mycelia. Membrane-bound proteases of both membrane fractions changed differently upon ageing. These results could not be explained as a consequence of nutrient starvation and indicate that the prolonged submerged cultivation triggers coordinated series of biochemical events which leads to the loss of growth competence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abeijon C, Orlean P, Robbins PW, Hirschberg CB (1989) Topography of glycosylation in yeast: characterization of GDPmannose transport and lumenal guanosine diphosphatase activities in Golgi-like vesicles. Proc Natl Acad Sci USA 86:6935–6939

    Article  PubMed  CAS  Google Scholar 

  • Barer MR, Harwood CR (1999) Bacterial viability and culturability. Adv Microb Physiol 41:93–137

    Article  PubMed  CAS  Google Scholar 

  • Borghouts C, Kimpel E, Osiewacz HD (1997) Mitochondrial DNA rearrangements of Podospora anserina are under the control of the nuclear gene grisea. Proc Natl Acad Sci USA 94:10768–10773

    Article  PubMed  CAS  Google Scholar 

  • Borghouts C, Werner A, Elthon T, Osiewacz HD (2001) Copper-modulated gene expression and senescence in the filamentous fungus Podospora anserina. Mol Cell Biol 21:390–399

    Article  PubMed  CAS  Google Scholar 

  • Bowman BJ, Mainzer SE, Allen KE, Slayman CW (1978) Effects of inhibitors on the plasma membrane and mitochondrial adenosine triphosphatases of Neurospora crassa. Biochim Biophys Acta 512:13–28

    Article  PubMed  CAS  Google Scholar 

  • Chovanec P, Kaliňák M, Liptaj T, Pronayová N, Jakubík T, Hudecová L’. Varečka D (2005) Study of Trichoderma viride metabolism under conditions of the restriction of oxidative processes. Can J Microbiol 51:853–862

    Article  PubMed  CAS  Google Scholar 

  • Costa V, Moradas-Ferreira P (2001) Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Mol Aspects Med 22:217–246

    Article  PubMed  CAS  Google Scholar 

  • Del Rio LA, Sandalio LM, Palma JM, Buen P, Corpas FJ (1992) Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radic Biol Med 13:557–580

    Article  PubMed  CAS  Google Scholar 

  • Feldman RI, Bernstein M, Schekman R (1987) Product of SEC53 is required of folding and glycosylation of secretory proteins in the lumen of the yeast endoplasmic reticulum. J Biol Chem 262:9332–9339

    PubMed  CAS  Google Scholar 

  • Hansberg W, de Groot H, Sies H (1993) Reactive oxygen species associated with cell differentiation in Neurospora crassa. Free Radic Biol Med 14:287–293

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski SM (2002) Growing old: metabolic control and yeast aging. Annu Rev Microbiol 56:769–792

    Article  PubMed  CAS  Google Scholar 

  • Kuck U, Osiewacz HD, Schmidt U, Kappelhoff B, Schulte E, Stahl U, Esser K (1985) The onset of senescence is affected by DNA rearrangements of a discontinuous mitochondrial gene in Podospora anserina. Curr Genet 9:373–382

    Article  PubMed  CAS  Google Scholar 

  • Lahoz R, Reyes F, Gomez-Alarcon G, Cribeiro L, Junquera MA, Lahoz-Beltra R (1986) The kinetics of the autolytic phase of growth in cultures of Aspergillus niger. Mycopathologia 94:75–78

    Article  PubMed  CAS  Google Scholar 

  • Longo VD, Gralla EB, Valentine JS (1996) Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. J Biol Chem 271:12275–12280

    Article  PubMed  CAS  Google Scholar 

  • McIntyre M, Berry DR, McNeil B (2000) Role of proteases in autolysis of Penicillium chrysogenum chemostat cultures in response to nutrient depletion. Appl Microbiol Biotechnol 53:235–242

    Article  PubMed  CAS  Google Scholar 

  • McNeil B, Berry DR, Harvey LM, Grant A, White S (1998) Measurement of autolysis in submerged batch cultures of Penicillium chrysogenum. Biotechnol Bioeng 57:297–305

    Article  PubMed  CAS  Google Scholar 

  • Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100

    PubMed  Google Scholar 

  • Osiewacz HD (2002a) Aging in fungi: role of mitochondria in Podospora anserina. Mech Ageing Dev 123:755–764

    Article  CAS  Google Scholar 

  • Osiewacz HD (2002b) Genes, mitochondria and aging in filamentous fungi. Ageing Res Rev 1:425–442

    Article  CAS  Google Scholar 

  • Pokorný R, Hudecová D, Burgstaller W, Varečka L’ (2004) Changes in properties of glutamate transport in Trichoderma viride vegetative mycelia upon adaptation to glutamate as carbon source. FEMS Microbiol Lett 15:123–128

    Article  CAS  Google Scholar 

  • Roze LV, Linz JE (1998) Lovastatin triggers an apoptosis-like cell death process in the fungus Mucor racemosus. Fungal Genet Biol 25:119–133

    Article  PubMed  CAS  Google Scholar 

  • Sami L, Pusztahelyi T, Emri T, Varecza Z, Fekete A, Grallert A, Karanyi Z, Kiss L, Pocsi I (2001) Autolysis and aging of Penicillium chrysogenum cultures under carbon starvation: chitinase production and antifungal effect of allosamidin. J Gen Appl Microbiol 47:201–211

    Article  PubMed  CAS  Google Scholar 

  • Sami L, Karaffa L, Emri T, Pocsi I (2003) Autolysis and ageing of Penicillium chrysogenum under carbon starvation: respiration and glucose oxidase production. Acta Microbiol Immunol Hung 50:67–76

    Article  PubMed  CAS  Google Scholar 

  • Silliker ME, Cummings DJ (1990) Genetic and molecular analysis of a long-lived strain of Podospora anserina. Genetics 125:775–781

    PubMed  CAS  Google Scholar 

  • Stahl U, Kuck U, Tudzynski P, Esser K (1980) Characterization and cloning of plasmid like DNA of the ascomycete Podospora anserina. Mol Gen Genet 178:639–646

    Article  PubMed  CAS  Google Scholar 

  • Stahl U, Tudzynski P, Kuck U, Esser K (1982) Replication and expression of a bacterial-mitochondrial hybrid plasmid in the fungus Podospora anserina. Proc Natl Acad Sci USA 79:3641–3645

    Article  PubMed  CAS  Google Scholar 

  • Strigáčová J, Chovanec P, Liptaj T, Hudecová D, Túrsky T, Šimkovič M, Varečka L’ (2001) Glutamate decarboxylase activity in Trichoderma viride conidia and developing mycelia. Arch Microbiol 175:32–40

    Article  PubMed  Google Scholar 

  • Šimkovič M, Kryštofová S, Varečka L’ (2000) Ca2+ fluxes in developing Trichoderma viride mycelium. Can J Microbiol 46:1–12

    Article  Google Scholar 

  • Šimkovič M, Ortega-Perez R, Turian G, Betina V, Hudecová D, Varečka L’ (1997) Developmental changes in the 45Ca2+ uptake by Trichoderma viride mycelium. Folia Microbiol 42:125–129

    Google Scholar 

  • Tudzynski P, Esser K (1979) Chromosomal and extrachromosomal control of senescence in the ascomycete Podospora anserina. Mol Gen Genet 173:71–84

    Article  PubMed  CAS  Google Scholar 

  • Turker MS, Nelson JG, Cummings DJ (1987) A Podospora anserina longevity mutant with a temperature-sensitive phenotype for senescence Mol Cell Biol 7:3199–3204

    PubMed  CAS  Google Scholar 

  • White S, Berry DR, McNeil B (1999) Effect of phenylacetic acid feeding on the process of cellular autolysis in submerged batch cultures of Penicillium chrysogenum. J Biotechnol 75:173–185

    Article  PubMed  CAS  Google Scholar 

  • White S, McIntyre M, Berry DR, McNeil B (2002) The autolysis of industrial filamentous fungi. Crit Rev Biotechnol 22:1–14

    Article  PubMed  Google Scholar 

  • Yoshihisa T, Ohsumi Y, Anraku Y (1988) Solubilization and purification of α-D-mannosidase, a marker enzyme of vacuolar membranes in Saccharomyces cerevisiae. J Biol Chem 263:5158–5163

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Ms. Irena Luptáková is acknowledged for her skilful technical assistance in some experiments. This work was supported by Science and Technology Assistance Agency under the contract No. APVT-20-003904.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Lakatoš.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šimkovič, M., Ditte, P., Chovanec, P. et al. Changes in growth competence of aged Trichoderma viride vegetative mycelia. Antonie van Leeuwenhoek 91, 407–416 (2007). https://doi.org/10.1007/s10482-006-9126-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-006-9126-2

Keywords

Navigation