Skip to main content
Log in

A histidine kinase sensor protein gene is necessary for induction of low pH tolerance in Sinorhizobium sp. strain BL3

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The aim of this investigation was to identify and isolate genes involved in acid tolerance from Sinorhizobium sp. strain BL3. It was hypothesized that acid tolerance of strain BL3 could be enhanced by high level expression of certain genes involved in acid tolerance, following insertion of these genes in a multiple copy plasmid. A cosmid clone library of BL3 was introduced into BL3, and the transconjugant colonies were selected at low pH. A single cosmid containing genes for acid tolerance was isolated from 40 different colonies. By transposon–insertion mutagenesis, subcloning and DNA sequencing, a gene involved in acid tolerance, actX, was identified in a 4.4-kb fragment of this cosmid. The actX mutant of BL3 showed increased acid sensitivity and was complemented by the 4.4-kb subcloned fragment. Phaseolus lathyroides seedlings inoculated with recombinant strains containing multiple copies of actX showed increased symbiotic performance at low pH. By constructing an actX::gus fusion, it was shown that actX was induced at low pH. actX encodes a putative histidine kinase sensor protein of a two-component regulatory system. The method of gene identification used in this study for isolation of actX may be applied for the isolation of other genes involved in tolerance to adverse environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beringer J.E., Beynon J., Buchanan-Wollaston A.V., Johnston A.W.B. (1978). Transfer of the drug resistance transposon Tn5 to Rhizobium. Nature. 276:633–634

    Article  Google Scholar 

  • Bothakur D., Soedarjo M., Fox P.M., Webb D.T. (2003). The mid genes of Rhizobium sp. strain TAL1145 are required for degradation of mimosine into 3-hydroxy-4-pyridone and are inducible by mimosine. Microbiology 149:537–546

    Article  CAS  Google Scholar 

  • Chen J., Richardson A.E., Rolfe B.J. (1993). Studies on the physiological and genetic basis of acid tolerance in Rhizobium leguminosarum biovar trifolii. Appl. Environ. Microbiol. 59:1798–1804

    PubMed  CAS  Google Scholar 

  • Dilworth M.J., Glenn A.R. (1999). Problems of adverse pH and bacterial strategies to combat it. In: Chadwick DJ, Gardew G. (eds), Bacterial responses to pH. England, John Wiley and Sons Ltd, pp. 4–18. ISBN 0471985996

    Chapter  Google Scholar 

  • Dilworth M.J., Howieson J.G., Reeve W.G., Tiwari R.P., Glenn A.R. (2001). Acid tolerance in legume root nodule bacteria and selecting for it. Aust. J. Exp. Agric. 41:435–446

    Article  CAS  Google Scholar 

  • Ditta G., Schmidhauser T., Yakobson E., Lu P., Liang X.W., Finlay D.R., Guiney D., Helinski D.R. (1985). Plasmids related to the broad host-range vector, pRK 290, useful for gene cloning and monitoring gene expression. Plasmid 13:149–153

    Article  PubMed  CAS  Google Scholar 

  • Figurski D.H., Helinski D.R. (1979). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Nat. Acad. Sci. USA. 76:1648–1652

    Article  PubMed  CAS  Google Scholar 

  • Finan T.M., Weidner S., Wong K., Buhrmester J., Chain P., Vorholter F.J., Hernandez-Lucas I., Becker A., Cowie A., Gouzy J., Golding B., Puhler A. (2001). The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proc. Natl. Acad. Sci. U.S.A. 98:9889–9894

    Article  PubMed  CAS  Google Scholar 

  • Foster J.W. (1991). Salmonella acid shock proteins are required for the acid tolerance response. J. Bacteriol. 173:6896–6902

    PubMed  CAS  Google Scholar 

  • Foster J.W., Hall M.K. (1990). Adaptive acidification tolerance response of Salmonella typhimurium. J. Bacteriol. 172:771–778

    PubMed  CAS  Google Scholar 

  • Fox P.M., Borthakur D. (2001). Selection of several classes of mimosine- degradation-defective Tn3Hogus-insertion mutants of Rhizobium sp. strain TAL1145 on the basis of mimosine-inducible GUS activity. Can. J. Microbiol. 47:488–494

    Article  PubMed  CAS  Google Scholar 

  • Goodson M., Rowbury R.J. (1989). Habituation to normally lethal acidity by prior growth of Escherichia coli at a sublethal acid pH value. Letts. Appl. Microbiol. 8:77–79

    Google Scholar 

  • Goss T.J., O’Hara G.W., Dilworth M.J., Glenn A.R. (1990). Cloning, characterization and complementation of lesions causing acid-sensitivity in Tn5-induced mutants of Rhizobium meliloti WSM419. J. Bacteriol. 172: 5173–5179

    PubMed  CAS  Google Scholar 

  • Howieson J.G. (1985). Use of an organic buffer for the selection of the acid tolerant Rhizobium meliloti strains. Plant Soil. 88:367–376

    Article  CAS  Google Scholar 

  • Johnston A.W.B., Beynon J.L., Buchanan-Wollaston A.V., Setchell S.M., Hirsch P.R., Beringer J.E. (1978). High frequency transfer of nodulating ability between strains and species of Rhizobium. Nature 276:634–636

    Article  Google Scholar 

  • Kaneko T., Nakamura Y., Sato S., Asamizu E., Kato T., Sasamoto S., Watanabe A., Idesawa K., Ishikawa A., Kawashima K., Kimura T., Kishida Y., Kiyokawa C., Kohara M., Matsumoto M., Matsuno A., Mochizuki Y., Nakayama S., Nakazaki N., Shimpo S., Sugimoto M., Takeuchi C., Yamada M., Tabata S. (2000). Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res. 7: 331–338

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T., Fritsch E.F., Sambrook J. (1982). Molecular cloning: a laboratory manual Cold Spring Harbor Laboratory. New York, Cold Spring Harbor

    Google Scholar 

  • Mavingui P., Flores M., Romero D., Martinez-Romero E., Palacios R. (1997). Generation of Rhizobium strains with improved symbiotic properties by random DNA amplification (RDA). Nat. Biotechnol. 15:564–569

    Article  PubMed  CAS  Google Scholar 

  • O’Hara G.W., Glenn A.R. (1994). The adaptive acid tolerance response in root nodule bacteria and Escherichia coli. Arch. Microbiol. 161:286–292

    PubMed  CAS  Google Scholar 

  • O’Hara G.W., Goss T.J., Dilworth M.J., Glenn A.R. (1989). Maintenance of intracellular pH and acid tolerance in Rhizobium meliloti. Appl. Environ. Microbiol. 55:1870–1876

    PubMed  CAS  Google Scholar 

  • Reeve W.G., Tiwari R.P., Kale N.B., Dilworth M.J., Glenn A.R. (2002). ActP controls copper homeostasis in Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti preventing low pH-induced copper toxicity. Mol. Microbiol. 43:981–991

    Article  PubMed  CAS  Google Scholar 

  • Reeve W.G., Tiwari R.P., Wong C.M., Dilworth M.J., Glenn A.R. (1998). The transcriptional regulator gene phrR in Sinorhizobium meliloti WSM419 is regulated by low pH and other stresses. Microbiology 144:3335–3342

    PubMed  CAS  Google Scholar 

  • Reeve W.G., Tiwai R.P., Worsley P.S., Dilworth M.J., Glenn A.R., Howieson J.G. (1999). Constructs for insertional mutagenesis, transcriptional signal localization and gene regulation studies. Microbiology 145:1507–1516

    Google Scholar 

  • Ruvkun G.B., Ausubel F.M. (1981). A general method for site-directed mutagenesis in prokaryotes. Nature 289:85–89

    Article  PubMed  CAS  Google Scholar 

  • Slavik J. (1982). Intracellular pH of yeast cells measured with fluorescent probes. FEBS Letts. 140:22–26

    Article  PubMed  CAS  Google Scholar 

  • Somasegaran P., Hoben H.J. (1994). Handbook for rhizobia, methods in legume-rhizobium technology. New York, Springer-Verlag New York. Inc. ISBN 0387941347

    Google Scholar 

  • Staskawicz B., Dahlbeck D., Keen N.T., Napoli C. (1987). Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J. Bacteriol. 169:5789–5794

    PubMed  CAS  Google Scholar 

  • Tiwari R.P., Reeve W.G., Glenn A.R. (1992). Mutations conferring acid sensitivity in the acid-tolerant strains Rhizobium meliloti WSM419 and Rhizobium leguminosarum biovar viciae WSM710. FEMS Microbiol. Letts. 100:107–112

    Article  CAS  Google Scholar 

  • Tiwari R.P., Reeve W.G., Dilworth M.J., Glenn A.R. (1996a). An essential role for actA in acid tolerance of Rhizobium meliloti. Microbiology 142:601–610

    CAS  Google Scholar 

  • Tiwari R.P., Reeve W.G. Dilworth M.J., Glenn A.R. (1996b). Acid tolerance in Rhizobium meliloti strain WSM419 involves a two-component sensor-regulatory system. Microbiology 142:1693–1704

    Article  CAS  Google Scholar 

  • Vincent J.M. (1970). A Manual for the Practical Study of Root Nodule Bacteria IBP Handbook No.15. Oxford, Blackwell Scientific

    Google Scholar 

  • Vinuesa P., Neumann-Silkow F., Pacios-Bras C., Spaink H.P., Martinez-Romero E., Werner D. (2003). Genetic analysis of pH-regulated operon from Rhizobium tropici CIAT899 involved in acid tolerance and nodulation competitiveness. Mol. Plant-Microbe Interact. 16:159–168

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Royal Golden Jubilee Ph.D. Program of the Thailand Research Fund, Suranaree University of Technology, Nakhon Ratchasima, Thailand, and University of Hawaii, USA. We thank Jonathan Awaya for helpful suggestions and technical help throughout the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dulal Borthakur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tittabutr, P., Payakapong, W., Teaumroong, N. et al. A histidine kinase sensor protein gene is necessary for induction of low pH tolerance in Sinorhizobium sp. strain BL3. Antonie Van Leeuwenhoek 89, 125–134 (2006). https://doi.org/10.1007/s10482-005-9015-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-005-9015-0

Keywords

Navigation