Skip to main content

Advertisement

Log in

A stochastic programming model for an energy planning problem: formulation, solution method and application

  • S.I.: MOPGP19
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The paper investigates national/regional power generation expansion planning for medium/long-term analysis in the presence of electricity demand uncertainty. A two-stage stochastic programming is designed to determine the optimal mix of energy supply sources with the aim to minimise the expected total cost of electricity generation considering the total carbon dioxide emissions produced by the power plants. Compared to models available in the extant literature, the proposed stochastic generation expansion model is constructed based on sets of feasible slots (schedules) of existing and potential power plants. To reduce the total emissions produced, two approaches are applied where the first one is performed by introducing emission costs to penalise the total emissions produced. The second approach transforms the stochastic model into a multi-objective problem using the \(\epsilon \)-constraint method for producing the Pareto optimal solutions. As the proposed stochastic energy problem is challenging to solve, a technique that decomposes the problem into a set of smaller problems is designed to obtain good solutions within an acceptable computational time. The practical use of the proposed model has been assessed through application to the regional power system in Indonesia. The computational experiments show that the proposed methodology runs well and the results of the model may also be used to provide directions/guidance for Indonesian government on which power plants/technologies are most feasible to be built in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmadi, L., Elkamel, A., Abdul-Wahab, S. A., Pan, M., Croiset, E., Douglas, P. L., et al. (2015). Multi-period optimization model for electricity generation planning considering plug-in hybrid electric vehicle penetration. Energies, 8(5), 3978–4002.

    Google Scholar 

  • Ba-Shammakh, M. S. (2011). A multiperiod mathematical model for integrating planning and so2 mitigation in the power generation sector. Energy & Fuels, 25(4), 1504–1509. https://doi.org/10.1021/ef101569q.

    Article  Google Scholar 

  • Bakirtzis, G. A., Biskas, P. N., & Chatziathanasiou, V. (2012). Generation expansion planning by milp considering mid-term scheduling decisions. Electric Power Systems Research, 86, 98–112.

    Google Scholar 

  • Betancourt-Torcat, A., & Almansoori, A. (2015). Design multiperiod optimization model for the electricity sector under uncertainty—A case study of the emirate of Abu Dhabi. Energy Conversion and Management, 100, 177–190.

    Google Scholar 

  • Birge, J. R., & Louveaux, F. (2011). Introduction to stochastic programming. Berlin: Springer.

    Google Scholar 

  • Cano, E. L., Moguerza, J. M., & Alonso-Ayuso, A. (2016). A multi-stage stochastic optimization model for energy systems planning and risk management. Energy and Buildings, 110, 49–56.

    Google Scholar 

  • Chen, H., Tang, B. J., Liao, H., & Wei, Y. M. (2016). A multi-period power generation planning model incorporating the non-carbon external costs: A case study of China. Applied Energy, 183, 1333–1345.

    Google Scholar 

  • Costa, O. L., de Oliveira Ribeiro, C., Rego, E. E., Stern, J. M., Parente, V., & Kileber, S. (2017). Robust portfolio optimization for electricity planning: An application based on the Brazilian electricity mix. Energy Economics, 64, 158–169. https://doi.org/10.1016/j.eneco.2017.03.021.

    Article  Google Scholar 

  • Elkamel, A., Hashim, H., Douglas, P. L., & Croiset, E. (2009). Optimization of energy usage for fleet-wide power generating system under carbon mitigation options. AIChE Journal, 55(12), 3168–3190.

    Google Scholar 

  • Elsholkami, M., & Elkamel, A. (2017). General optimization model for the energy planning of industries including renewable energy: A case study on oil sands. AIChE Journal, 63(2), 610–638.

    Google Scholar 

  • Feng, Y., & Ryan, S. M. (2013). Scenario construction and reduction applied to stochastic power generation expansion planning. Computers & Operations Research, 40(1), 9–23.

    Google Scholar 

  • Flores-Quiroz, A., Palma-Behnke, R., Zakeri, G., & Moreno, R. (2016). A column generation approach for solving generation expansion planning problems with high renewable energy penetration. Electric Power Systems Research, 136, 232–241.

    Google Scholar 

  • Gorenstin, B. G., Campodonico, N. M., Costa, J. P., & Pereira, M. V. F. (1993). Power system expansion planning under uncertainty. IEEE Transactions on Power Systems, 8(1), 129–136.

    Google Scholar 

  • Haimes, Y., Lasdon, L., & Wismer, D. (1971). On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Transactions on Systems, Man, and Cybernetics SMC, 1(3), 296–297.

    Google Scholar 

  • Hashim, H., Douglas, P., Elkamel, A., & Croiset, E. (2005). Optimization model for energy planning with CO2 emission considerations. Industrial & Engineering Chemistry Research, 44(4), 879–890.

    Google Scholar 

  • Hu, Q., Huang, G. H., Cai, Y. P., & Sun, W. (2014). Planning of electric power generation systems under multiple uncertainties and constraint-violation levels. Journal of Environmental Informatics, 23(1), 55–64.

    Google Scholar 

  • Ioannou, A., Fuzuli, G., Brennan, F., Yudha, S. W., & Angus, A. (2019). Multi-stage stochastic optimization framework for power generation system planning integrating hybrid uncertainty modelling. Energy Economics, 80, 760–776.

    Google Scholar 

  • Jones, D. (2011). A practical weight sensitivity algorithm for goal and multiple objective programming. European Journal of Operational Research, 213(1), 238–245.

    Google Scholar 

  • Kannan, S., Slochanal, S. M. R., & Padhy, N. P. (2005). Application and comparison of metaheuristic techniques to generation expansion planning problem. IEEE Transactions on Power Systems, 20(1), 466–475.

    Google Scholar 

  • Kannan, S., Raja Slochanal, S. M., Baskar, S., & Murugan, P. (2007). Application and comparison of metaheuristic techniques to generation expansion planning in the partially deregulated environment. IET Generation, Transmission Distribution, 1(1), 111–118.

    Google Scholar 

  • Kaveh, F., Tavakkoli-Moghaddam, R., Triki, C., Rahimi, Y., & Jamili, A. (2019). A new bi-objective model of the urban public transportation hub network design under uncertainty. Annals of Operations Research,. https://doi.org/10.1007/s10479-019-03430-9.

    Article  Google Scholar 

  • Koltsaklis, N. E., Dagoumas, A. S., Kopanos, G. M., Pistikopoulos, E. N., & Georgiadis, M. C. (2014). A spatial multi-period long-term energy planning model: A case study of the greek power system. Applied Energy, 115, 456–482.

    Google Scholar 

  • Koltsaklis, N. E., & Georgiadis, M. C. (2015a). An integrated unit commitment and generation expansion planning model. In K. V. Gernaey, J. K. Huusom, & R. Gani (Eds.), 12th international symposium on process systems engineering and 25th European symposium on computer aided process engineering, computer aided chemical engineering (Vol. 37, pp. 2273–2278). Elsevier.

  • Koltsaklis, N. E., & Georgiadis, M. C. (2015b). A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints. Applied Energy, 158, 310–331.

    Google Scholar 

  • Koltsaklis, N. E., & Nazos, K. (2017). A stochastic milp energy planning model incorporating power market dynamics. Applied Energy, 205, 1364–1383.

    Google Scholar 

  • Krukanont, P., & Tezuka, T. (2007). Implications of capacity expansion under uncertainty and value of information: The near-term energy planning of Japan. Energy, 32(10), 1809–1824.

    Google Scholar 

  • Lara, C. L., Mallapragada, D. S., Papageorgiou, D. J., Venkatesh, A., & Grossmann, I. E. (2018). Deterministic electric power infrastructure planning: Mixed-integer programming model and nested decomposition algorithm. European Journal of Operational Research, 271(3), 1037–1054.

    Google Scholar 

  • Laumanns, M., Thiele, L., & Zitzler, E. (2006). An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. European Journal of Operational Research, 169(3), 932–942.

    Google Scholar 

  • Li, G., Huang, G., Sun, W., & Ding, X. (2014). An inexact optimization model for energy-environment systems management in the mixed fuzzy, dual-interval and stochastic environment. Renewable Energy, 64, 153–163.

    Google Scholar 

  • Li, Y., & Huang, G. (2012). Electric-power systems planning and greenhouse-gas emission management under uncertainty. Energy Conversion and Management, 57, 173–182.

    Google Scholar 

  • Li, Y., Huang, G., Li, Y., Xu, Y., & Chen, W. (2010). Regional-scale electric power system planning under uncertainty—A multistage interval-stochastic integer linear programming approach. Energy Policy, 38(1), 475–490.

    Google Scholar 

  • Maddah, B., Ben Abdelaziz, F., & Tarhini, H. (2019). Bi-objective optimization of retailer’s profit and customer surplus in assortment and pricing planning. Annals of Operations Research,. https://doi.org/10.1007/s10479-019-03265-4.

    Article  Google Scholar 

  • Malcolm, S. A., & Zenios, S. A. (1994). Robust optimization for power systems capacity expansion under uncertainty. The Journal of the Operational Research Society, 45(9), 1040–1049.

    Google Scholar 

  • Min, D., & Chung, J. (2013). Evaluation of the long-term power generation mix: The case study of south korea’s energy policy. Energy Policy, 62, 1544–1552. https://doi.org/10.1016/j.enpol.2013.07.104.

    Article  Google Scholar 

  • Mirzaesmaeeli, H., Elkamel, A., Douglas, P., Croiset, E., & Gupta, M. (2010). A multi-period optimization model for energy planning with CO2 emission consideration. Journal of Environmental Management, 91(5), 1063–1070.

    Google Scholar 

  • Moghddas-Tafreshi, S., Shayanfar, H., Saliminia Lahiji, A., Rabiee, A., & Aghaei, J. (2011). Generation expansion planning in pool market: A hybrid modified game theory and particle swarm optimization. Energy Conversion and Management, 52(2), 1512–1519.

    Google Scholar 

  • Moret, S., Babonneau, F., Bierlaire, M., & Maréchal, F. (2019). Decision support for strategic energy planning: A robust optimization framework. European Journal of Operational Research,. https://doi.org/10.1016/j.ejor.2019.06.015.

    Article  Google Scholar 

  • Muis, Z. A., Hashim, H., Manan, Z. A., & Douglas, P. L. (2011). Effects of fossil fuel price fluctuations on electricity planning comprising renewable energy. Asia-Pacific Journal of Chemical Engineering, 6(3), 552–562.

    Google Scholar 

  • Mulvey, J. M., Vanderbei, R. J., & Zenios, S. A. (1995). Robust optimization of large-scale systems. Operations Research, 43(2), 264–281.

    Google Scholar 

  • Murphy, F. H., Sen, S., & Soyster, A. L. (1982). Electric utility capacity expansion planning with uncertain load forecasts. A I I E Transactions, 14(1), 52–59.

    Google Scholar 

  • Neshat, N., & Amin-Naseri, M. (2015). Cleaner power generation through market-driven generation expansion planning: An agent-based hybrid framework of game theory and particle swarm optimization. Journal of Cleaner Production, 105, 206–217.

    Google Scholar 

  • Nie, S., Li, Y., Liu, J., & Huang, C. Z. (2017). Risk management of energy system for identifying optimal power mix with financial-cost minimization and environmental-impact mitigation under uncertainty. Energy Economics, 61, 313–329.

    Google Scholar 

  • Ozcan, M., Ozturk, S., & Yildirim, M. (2014). Turkey’s long-term generation expansion planning with the inclusion of renewable-energy sources. Computers & Electrical Engineering, 40(7), 2050–2061.

    Google Scholar 

  • Park, H., & Baldick, R. (2015). Stochastic generation capacity expansion planning reducing greenhouse gas emissions. IEEE Transactions on Power Systems, 30(2), 1026–1034.

    Google Scholar 

  • Pereira, A. J., & Saraiva, J. T. (2011). Generation expansion planning (GEP)—A long-term approach using system dynamics and genetic algorithms (gas). Energy, 36(8), 5180–5199.

    Google Scholar 

  • PLN. (2019). Rencana usaha penyediaan tenaga listrik (rutpl) 2019–2028. Technical Report, Indonesia.

  • Rentizelas, A. A., Tolis, A. I., & Tatsiopoulos, I. P. (2012). Investment planning in electricity production under CO2 price uncertainty. International Journal of Production Economics, 140(2), 622–629.

    Google Scholar 

  • Sadegheih, A., & Drake, P. (2008). System network planning expansion using mathematical programming, genetic algorithms and tabu search. Energy Conversion and Management, 49(6), 1557–1566.

    Google Scholar 

  • Sirikum, J., Techanitisawad, A., & Kachitvichyanukul, V. (2007). A new efficient GA-benders’ decomposition method: For power generation expansion planning with emission controls. IEEE Transactions on Power Systems, 22(3), 1092–1100.

    Google Scholar 

  • Song, X., Jones, D., Asgari, N., & Pigden, T. (2019). Multi-objective vehicle routing and loading with time window constraints: A real-life application. Annals of Operations Research,. https://doi.org/10.1007/s10479-019-03205-2.

    Article  Google Scholar 

  • Steuer, R. (1986). Multiple criteria optimization: Theory, computation, and application. Hoboken: Wiley.

    Google Scholar 

  • Tekiner, H., Coit, D. W., & Felder, F. A. (2010). Multi-period multi-objective electricity generation expansion planning problem with Monte-Carlo simulation. Electric Power Systems Research, 80(12), 1394–1405.

    Google Scholar 

  • Thangavelu, S. R., Khambadkone, A. M., & Karimi, I. A. (2015). Long-term optimal energy mix planning towards high energy security and low GHG emission. Applied Energy, 154, 959–969.

    Google Scholar 

  • Tolis, A. I., & Rentizelas, A. A. (2011). An impact assessment of electricity and emission allowances pricing in optimised expansion planning of power sector portfolios. Applied Energy, 88(11), 3791–3806.

    Google Scholar 

  • Torabi Yeganeh, F., & Zegordi, S. H. (2020). A multi-objective optimization approach to project scheduling with resiliency criteria under uncertain activity duration. Annals of Operations Research,. https://doi.org/10.1007/s10479-019-03375-z.

    Article  Google Scholar 

  • Vithayasrichareon, P., & MacGill, I. F. (2012). A monte carlo based decision-support tool for assessing generation portfolios in future carbon constrained electricity industries. Energy Policy, 41, 374–392.

    Google Scholar 

  • Wijaya, A., Chrysolite, H., Ge, M., Wibowo, C. K., Pradana, A., Utami, A. F., & Austin, K. (2017). How can Indonesia achieve its climate change mitigation goal? An analysis of potential emissions reductions from energy and land-use policies. Technical report, Working Paper. Jakarta, Indonesia: World Resources Institute.

  • Yakavenka, V., Mallidis, I., Vlachos, D., Iakovou, E., & Eleni, Z. (2019). Development of a multi-objective model for the design of sustainable supply chains: The case of perishable food products. Annals of Operations Research,. https://doi.org/10.1007/s10479-019-03434-5.

    Article  Google Scholar 

  • Yoza, A., Yona, A., Senjyu, T., & Funabashi, T. (2014). Optimal capacity and expansion planning methodology of PV and battery in smart house. Renewable Energy, 69, 25–33.

    Google Scholar 

  • Zhang, Q., Mclellan, B. C., Tezuka, T., & Ishihara, K. N. (2013). An integrated model for long-term power generation planning toward future smart electricity systems. Applied Energy, 112, 1424–1437.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Ade Irawan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irawan, C.A., Hofman, P.S., Chan, H.K. et al. A stochastic programming model for an energy planning problem: formulation, solution method and application. Ann Oper Res 311, 695–730 (2022). https://doi.org/10.1007/s10479-020-03904-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03904-1

Keywords

Navigation