Skip to main content
Log in

A-priori upper bounds for the set covering problem

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we present a new bound obtained with the probabilistic method for the solution of the set covering problem with unit costs. The bound is valid for problems of fixed dimension, thus extending previous similar asymptotic results, and it depends only on the number of rows of the coefficient matrix and the row densities. We also consider the particular case of matrices that are almost block decomposable, and show how the bound may improve according to the particular decomposition adopted. Such final result may provide interesting indications for comparing different matrix decomposition strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alon, N., & Spencer, J. (2008). The probabilistic method (3rd ed.). New York: Wiley.

    Book  Google Scholar 

  • Bertolazzi, E., & Rimoldi, A. (2014). Fast matrix decomposition in \(F^2\). Journal of Computational and Applied Mathematics, 260, 519–532.

    Article  Google Scholar 

  • Borndorfer, R., Ferreira, C. E., & Martin, A. (1998). Decomposing matrices into blocks. SIAM Journal of Optimization, 9(1), 236–269.

    Article  Google Scholar 

  • Boros, E., Hammer, P. L., & Ibaraki, T. (2005). Logical analysis of data. In J. Wang (Ed.), Encyclopedia of data warehousing and mining (pp. 689–692). Hershey: Idea Group Reference.

    Chapter  Google Scholar 

  • Boros, E., Scozzari, A., Tardella, F., & Veneziani, P. (2014). Polynomially computable bounds for the probability of the union of events. Mathematics of Operations Research, 39(4), 1311–1329.

    Article  Google Scholar 

  • Boschetti, M., & Maniezzo, V. (2014). A set covering based matheuristic for a real-world city logistics problem. International Transactions in Operational Research. doi:10.1111/itor.12110.

  • Burke, E. K., & Curtois, T. (2014). New approaches to nurse rostering benchmark instances. European Journal of Operational Research, 237, 71–81.

    Article  Google Scholar 

  • Cacchiani, V., Hemmelmayr, V. C., & Tricoire, F. (2014). A set-covering based heuristic algorithm for the periodic vehicle routing problem. Discrete Applied Mathematics, 163, 53–64.

    Article  Google Scholar 

  • Caprara, A., Toth, P., & Fischetti, M. (2000). Algorithms for the set covering problem. Annals of Operations Research, 98, 353–371.

    Article  Google Scholar 

  • Chaovalitwongse, W. A., Berger-Wolf, T. Y., Dasgupta, B., & Ashley, M. V. (2007). Set covering approach for reconstruction of sibling relationships. Optimization Methods and Software, 22, 11–24.

    Article  Google Scholar 

  • Chen, L., & Crampton, J. (2009). Set Covering Problems in Role-Based Access Control. In: Lecture Notes in Computer Science (Vol. 5789, pp. 689–704).

  • Christofides, N., & Korman, S. (1975). A computational survey of methods for the set covering problem. Management Science, 21, 591–599.

    Article  Google Scholar 

  • Chvatal, V. (1979). A greedy heuristic for the set-covering problem. Mathematics of Operations Research, 4(3), 233–235.

    Article  Google Scholar 

  • Crama, Y., Hammer, P. L., & Ibaraki, T. (1988). Cause-effect relationships and partially defined Boolean functions. Annals of Operational Research, 16, 299–325.

    Article  Google Scholar 

  • Fiege, U. A. (1998). Threshold of ln n for approximating set cover. Journal of the ACM, 45(4), 634–652.

    Article  Google Scholar 

  • Fontanari, J. F. (1996). A statistical mechanics analysis of the set covering problem. Journal of Physics A: Mathematical and General, 9, 473–483.

    Article  Google Scholar 

  • Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the Theory of NP-completeness. New York: Freeman and Co.

    Google Scholar 

  • Grossman, T., & Wool, A. (1997). Computational experience with approximation algorithms for the set covering problem. European Journal of Operational Research, 101, 81–92.

    Article  Google Scholar 

  • Johnson, D. S. (1974). Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences, 9, 256–278.

    Article  Google Scholar 

  • Kahou, G. A. A., Grigori, L., & Masha Sosonkina, M. (2008). A partitioning algorithm for block-diagonal matrices with overlap. Parallel Computing, 34, 332–344.

    Article  Google Scholar 

  • Karp, R. M. (1976). The probabilistic analysis of some combinatorial search algorithms. In J. F. Traub (Ed.), Algorithms and complexity: New directionsand recent results (p. 120). New York: Academic Press.

  • Kwerel, S. M. (1975). Bounds on probability of a union and intersection of \(m\) events. Advances in Applied Probability, 7, 431–448.

    Article  Google Scholar 

  • Lan, G. (2007). An effective and simple heuristic for the set covering problem. European Journal of Operational Research, 176, 1387–1403.

    Article  Google Scholar 

  • Levin, A. (2008). Approximating the unweighted k-set cover problem: Greedy meets local search. SIAM Journal on Discrete Mathematics, 231, 25–264.

    Google Scholar 

  • Li, T. (2005). A general model for clustering binary data. In: Proceedings of the 11th ACM SIGKDD international conference on knowledge discovery in data mining (KDD ’05) (pp. 188–197). New York, NY: ACM.

  • Lovasz, L. (1975). On the ratio of the optimal integral and fractional covers. Discrete Mathematics, 13, 383–390.

    Article  Google Scholar 

  • Mezard, M., Parisi, G., & Virasoro, M. A. (1987). Spin glass theory and beyond. Singapore: World Scientific.

    Google Scholar 

  • Prékopa, A., & Gao, L. (2005). Bounding the probability of the union of events by the use of aggregation and disaggregation in linear programs. Discrete Applied Mathematics, 145, 444–454.

    Article  Google Scholar 

  • Vercellis, C. (1984). A probabilistic analysis of the set covering problem. Annals of Operations Research, 1, 255–271.

    Article  Google Scholar 

  • Vijeyamurthy, C. N., & Panneerselvam, R. (2010). Literature review of covering problem in operations management. International Journal of Services, Economics and Management, 2, 267–285.

    Article  Google Scholar 

  • Zhang, Z., Li, T., Ding, C., & Zhang, X. (2007). Binary matrix factorization with applications. In: Proceedings of the 2007 Seventh IEEE International Conference on Data Mining (ICDM ’07) (pp. 391–400). Washington, DC: IEEE Computer Society.

Download references

Acknowledgments

This work has been supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Consiglio Nazionale delle Ricerche (CNR) (Scientific Cooperation Agreement CNR-CNPq 2012–2013), and FAPEMIG (Fundacão de Amparo à Pesquisa do Estado de Minas Gerais)-Programa Pesquisador Mineiro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Felici.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felici, G., Ndreca, S., Procacci, A. et al. A-priori upper bounds for the set covering problem. Ann Oper Res 238, 229–241 (2016). https://doi.org/10.1007/s10479-015-2069-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-2069-0

Keywords

Navigation