Skip to main content
Log in

Efficient simulation of tail probabilities of sums of correlated lognormals

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We consider the problem of efficient estimation of tail probabilities of sums of correlated lognormals via simulation. This problem is motivated by the tail analysis of portfolios of assets driven by correlated Black-Scholes models. We propose two estimators that can be rigorously shown to be efficient as the tail probability of interest decreases to zero. The first estimator, based on importance sampling, involves a scaling of the whole covariance matrix and can be shown to be asymptotically optimal. A further study, based on the Cross-Entropy algorithm, is also performed in order to adaptively optimize the scaling parameter of the covariance. The second estimator decomposes the probability of interest in two contributions and takes advantage of the fact that large deviations for a sum of correlated lognormals are (asymptotically) caused by the largest increment. Importance sampling is then applied to each of these contributions to obtain a combined estimator with asymptotically vanishing relative error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, R., Blanchet, J., & Liu, J. C. (2008). Fast simulation of Gaussian random fields. In S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, & J. W. Fowler (Eds.), Proceedings of the winter simulation conference (pp. 328–336).

  • Asmussen, S., & Kroese, D. P. (2006). Improved algorithms for rare event simulation with heavy tails. Advances in Applied Probability, 38, 545–558.

    Article  Google Scholar 

  • Asmussen, S., & Rojas-Nandayapa, L. (2006). Sums of dependent lognormal random variables: Asymptotics and simulation. Unpublished manuscript; available from www.thiele.au.dk.

  • Asmussen, S., & Glynn, P. W. (2007). Stochastic simulation. Algorithms and analysis. Berlin: Springer.

    Google Scholar 

  • Asmussen, S., & Rojas-Nandayapa, L. (2008). Asymptotics of sums of lognormal random variables with Gaussian copula. Statistics and Probability Letters, 78, 2709–2714.

    Article  Google Scholar 

  • Blanchet, J., & Glynn, P. (2008). Efficient rare-event simulation for the maximum of heavy-tailed random walk. Annals of Aplied Probability, 18, 1351–1378.

    Article  Google Scholar 

  • Blanchet, J., Glynn, P., & Liu, J. (2007). Fluid heuristics, Lyapunov bounds and efficient importance sampling for a heavy-tailed G/G/1 queue. Queueing Systems, 57, 99–113.

    Article  Google Scholar 

  • Blanchet, J., Juneja, S., & Rojas-Nandayapa, L. (2008). Efficient tail estimation for sums of correlated lognormals. In S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, & J. W. Fowler (Eds.), Proceedings of the winter simulation conference (pp. 607–614).

  • Bucklew, J. (2004). Introduction to rare-event simulation. New York: Springer.

    Google Scholar 

  • Dupuis, P., Leder, K., & Wang, H. (2006). Importance sampling for sums of random variables with regularly varying tails. ACM TOMACS, 17.

  • Embrechts, P., Klüppelberg, C., & Mikosch, T. (1997). Modeling extremal events for finance and insurance. Berlin: Springer.

    Google Scholar 

  • Glasserman, P. (2000). Monte Carlo methods in finance. New York: Springer.

    Google Scholar 

  • Glasserman, P., Heidelberger, P., & Shahabuddin, P. (1998). Gaussian importance sampling and stratification: computational issues. In D. J. Meideros, E. F. Watson, J. S. Carson, & M. S. Manivannan (Eds.), Proceedings of the 1998 winter simulation conference (pp. 685–693).

  • Hammersley, J. M., & Handscomb, D. C. (1964). Monte Carlo methods. London: Chapman & Hall.

    Google Scholar 

  • Juneja, S. (2007). Estimating tail probabilities of heavy tailed distributions with asymptotically zero relative error. Queueing Systems, 57, 115–127.

    Article  Google Scholar 

  • Juneja, S., & Shahabuddin, P. (2002). Simulating heavy-tailed processes using delayed hazard rate twisting. ACM TOMACS, 12, 94–118.

    Article  Google Scholar 

  • Juneja, S., & Shahabuddin, P. (2006). Rare event simulation techniques: An introduction and recent advances. In S. G. Henderson & B. L. Nelson (Eds.), Handbooks in operations research and management science. Simulation (pp. 291–350). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Juneja, S., Karandikar, R. L., & Shahabuddin, P. (2007). Asymptotics and fast simulation for tail probabilities of maximum of sums of few random variables. ACM TOMACS, 17, 2. Article 7.

    Article  Google Scholar 

  • McNeil, A., Frey, R., & Embrechts, P. (2005). Quantitative risk management: Concepts, techniques and tools. New Jersey: Princeton University Press.

    Google Scholar 

  • Resnick, S. (1992). Adventures in stochastic processes. Boston: Birkhauser.

    Google Scholar 

  • Rojas Nandayapa, L. (2008). Risk probabilities: Asymptotics and simulation. PhD Thesis, Aarhus University, Denmark.

  • Rubinstein, R. Y., & Kroese, D. P. (2004). The cross-entropy method. New York: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Juneja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asmussen, S., Blanchet, J., Juneja, S. et al. Efficient simulation of tail probabilities of sums of correlated lognormals. Ann Oper Res 189, 5–23 (2011). https://doi.org/10.1007/s10479-009-0658-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-009-0658-5

Keywords

Navigation