Skip to main content
Log in

A Globally Convergent Algorithm to Compute All Nash Equilibria for n-Person Games

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we present an algorithm to compute all Nash equilibria for generic finite n-person games in normal form. The algorithm relies on decomposing the game by means of support-sets. For each support-set, the set of totally mixed equilibria of the support-restricted game can be characterized by a system of polynomial equations and inequalities. By finding all the solutions to those systems, all equilibria are found. The algorithm belongs to the class of homotopy-methods and can be easily implemented. Finally, several techniques to speed up computations are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, W.W. and P. Loustaunau. (1994). “An Introduction to Gröbner Bases.” In Graduate Studies in Mathematics Volume 3, American Mathematical Society, Providence.

    Google Scholar 

  • Allgower, E.L. and K. Georg. (1980). “Simplicial and Continuation Methods for Approximating Fixed Points andSolutions to Systems of Equations.” SIAM Review 22, 28–85.

    Article  Google Scholar 

  • Allgower, E.L. and K. Georg. (1983). “Predictor-Corrector and Simplicial Methods for Approximating Fixed Pointsand Zero Points of Nonlinear Mappings.” In A.Bachem, M. Grötschel and B. Kort (eds.), Mathematical Programming: The State of the Art, Berlin, Heidelberg, New York: Springer-Verlag, 15–56.

    Google Scholar 

  • Allgower, E.L. and K. Georg. (1990) Numerical Continuation Methods: An IntroductionHeidelberg: Springer-Verlag, Berlin.

    Google Scholar 

  • Allgower, E.L. and K. Georg. (1993). “Continuation and Path Following.” Acta Numerica 1–64.

  • Blume, L. and W. Zame. (1994). “The Algebraic Geometry of Perfect and Sequential Equilibrium.” Econometrica 62, 783–794.

    Google Scholar 

  • Bochnak, J., M. Coste, and M-F. Roy. (1987). Géométrie Algébrique RéelleBerlin: Springer-Verlag.

    Google Scholar 

  • Borm, P.A. Gijsberts, and S.H. Tijs. (1989). “A Geometric-Combinatorial Approach to Bimatrix Games.” Methods ofOperations Research 59, 199–209.

    Google Scholar 

  • Bubelis, V. (1979). “On Equilibria in Finite Games.” International Journal of Game Theory 8, 65–79.

    Article  Google Scholar 

  • Buchberger, B. (1965). Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einemnulldimensionalen Polynomideal, Ph.D. Thesis, University of Innsbruck, Innsbruck, Austria.

  • Chow, S.N.J. Mallet-Paret, and J.A. Yorke. (1979). “A Homotopy Method for Locating All Zeros of a System ofPolynomials.” In H.O. Peitgen and H.O. Walther (eds.), Functional Differential Equations and Approximation of Fixed PointsBerlin, Heidelberg, New York: Springer-Verlag, pp. 228– 237.

    Google Scholar 

  • Cox, D.A. J.B. Little, and D. O'Shea. (1996). Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative AlgebraUndergraduate Texts in Mathematics, New York: Springer-Verlag.

    Google Scholar 

  • Datta, R.S. (2003). “University of Nash Equilibria.” Mathematics of Operations Research 28, 424–432.

    Article  Google Scholar 

  • Dickhaut, J. and T. Kaplan. (1993). “A Program for Finding Nash Equilibria.” In H.R. Varian (eds.), Economic and Financial Modelingwith Mathematica, New York: Springer-Verlag.

    Google Scholar 

  • Drexler, F.J. (1977). “Eine Methode Zur Berechnung sämtlicher Lösungen van Polynomgleichungssystemen.” Numerische Mathematik 29, 45–58.

    Article  Google Scholar 

  • Drexler, F.J. (1978). “A Homotopy-Method for the Calculation of All Zero-Dimensional Polynomial Ideals.” In H.G. Wacker (eds.), Continuation Methods. New York: Academic Press, pp. 69–93.

    Google Scholar 

  • Garcia, C.B. and T.Y. Li. (1980). “On The Number of Solutions to Polynomial Systems of Equations.” SIAM Journal onNumerical Analysis 17, 540–546.

    Article  Google Scholar 

  • Garcia, C.B. and W.I. Zangwill. (1979a). “Finding All Solutions to Polynomial Systems and Other Systems ofEquations.” Mathematical Programming 16, 159–176.

    Article  Google Scholar 

  • Garcia, C.B. and W.I. Zangwill. (1979b). “Determining All Solution to Certain Systems of Nonlinear Equations.” Mathematics of Operations Research 4, 1–14.

    Article  Google Scholar 

  • Garcia, C.B. and W.I. Zangwill. (1980). “Global Continuation Methods for Finding All Solutions to PolynomialSystems of Equations in n Variables.” In A.V. Fiaccoand K.O. Kortanek (eds.), Extremal Methods and Systems Analysis, Heidelberg, New York: Springer-Verlag, Berlin, pp. 481–497.

    Google Scholar 

  • Garcia, C.B. and W.I. Zangwill. (1981). Pathways to Solutions, Fixed Points, and EquilibriaNew Jersey: Pentice-HallInc., Englewood Cliffs.

    Google Scholar 

  • Gröbner, W. (1949). Moderne Algebraische Geometrie, Die Idealtheoretischen GrundlagenSpringer-Verlag, Wien, Innsbruck

    Google Scholar 

  • Gröbner, W. (1970). Algebraische Geometrie II. Mannheim: Bibliografisches Institut.

    Google Scholar 

  • Harsanyi, J.C (1973). “Oddness of The Number of Equilibrium Points.” International Journal of Game Theory 2, 235–250.

    Article  Google Scholar 

  • Harsanyi, J.C. and R. Selten. (1988). A General Theory of Equilibrium Selection in Games Massachusetts: Cambridge, MIT Press

    Google Scholar 

  • Herings, P.J.J. (1997). “A Globally and Universally Stable Price Adjustment Process.” Journal of MathematicalEconomics 27, 163–193.

    Google Scholar 

  • Herings, P.J.J. and R. Peeters. (2001). “A Differentiable Homotopy to Compute Nash Equilibria of n-Person Games.” Economic Theory 18, 159–186.

    Article  Google Scholar 

  • Jongen, H.T.P. Jonker, and F. Twilt. (1983). Nonlinear Optimization in ℝn, I. Morse Theory, ChebyshevApproximation, Methoden und Verfahren der mathematische Physik, Peter Lang, Frankfurt vol. 29.

    Google Scholar 

  • Kojima, M. and S. Mizuno. (1983). “Computation of All Solutions to a System of Polynomial Equations. Mathematical Programming 25, 131–157.

    Google Scholar 

  • Kostreva, M.M. and L.A. Kinard. (1991). “A Differential Homotopy Approach for Solving Polynomial OptimizationProblems and Noncooperative Games.” Computers and Mathematics with Applications 21, 135–143.

    Article  Google Scholar 

  • Mas-Colell, A. (1985). The Theory of General Economic Equilibrium: A Differentiable Approach Cambridge: Cambridge University Press.

    Google Scholar 

  • McKelvey, R.D. (1996). “A Liapunov Function For Nash Equilibria, California Institute of Technology.” SocialScience Working Paper #953.

  • McKelvey,R.D. and A. McLennan. (1996). “Computation of Equilibria in Finite Games.” In H.M. Amman, D.A. Kendrick and J. Rust (eds.), Handbook ofComputational Economics, (Vol. I)., Amsterdam: Elsevier Science, 87–142.

    Google Scholar 

  • McKelvey, R.D. and A. McLennan. (1997). “The Maximal Number of Regular Totally Mixed Nash Equilibria.” Journal of Economic Theory 72, 411–425.

    Article  Google Scholar 

  • McLennan, A. (1997). “The Maximal Generic Number of Pure Nash Equilibria.” Journal of Economic Theory 72, 408–410.

    Article  Google Scholar 

  • McLennan, A. (1999). “The Expected Number of Nash Equilibria of a Normal Form Game.” Mimeo.

  • Mizuno, S. (1981). “A Simplicial Algorithm for Finding All Solutions to Polynomial Systems of Equations.” ResearchReports B-97, Department of Information Sciences, Tokyo Institute of Technology, Tokyo.

    Google Scholar 

  • Morgan, A.P. (1983). “A Method for Computing All Solutions to Systems of Polynomial Equations.” ACMTransactions on Mathematical Software 9, 1–17.

    Article  Google Scholar 

  • Morgan, A.P. (1987). Solving Polynomial Systems Using Continuation for Engineering and Scientific ProblemsNew Jersey: Prentice-Hall Inc., Upper Saddle River.

    Google Scholar 

  • Morgan, A.P. and A.J. Sommese, (1987). “Computing All Solutions to Polynomial Systems Using Homotopy Continuation.” Applied Mathematics and Computation 24, 115–138.

    Article  Google Scholar 

  • Morgan, A.P., A.J. Sommese, and L.T. Watson. (1989). “Finding All Isolated Solutions to Polynomial Systems Using Hompack.” ACM Transactions on Mathematical Software 15, 93–122.

    Article  Google Scholar 

  • Rosenmüller, J. (1971) ”On a Generalization of The Lemke-Howson Algorithm to Noncooperative n-Person Games” SIAM Journal on Applied Mathematics 21, 73–79.

    Article  Google Scholar 

  • Watson, L.T., S.C. Billups, and A.P. Morgan. (1987). “Hompack: A Suite of Codes for Globally ConvergentHomotopy Algorithms.” ACM Transactions on Mathematical Software 13, 281–310.

    Article  Google Scholar 

  • Wilson, R. (1971). “Computing Equilibria of n-Person Games.” SIAM Journal of Applied Mathematics 21, 80–87.

    Article  Google Scholar 

  • Wright, A.H. (1985). “Finding All Solutions to a System of Polynomial Equations.” Mathematics of Computation 44,125–133.

    Article  Google Scholar 

  • Zulehner, W. (1988). “A Simple Homotopy Method for Determining All Isolated Solutions to Polynomial Systems.” Mathematics of Computation 50, 167–177.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jean-Jacques Herings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herings, P.JJ., Peeters, R. A Globally Convergent Algorithm to Compute All Nash Equilibria for n-Person Games. Ann Oper Res 137, 349–368 (2005). https://doi.org/10.1007/s10479-005-2265-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-005-2265-4

Keywords

Navigation