Skip to main content
Log in

Phase Portraits of the Leslie-Gower System

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper we characterize the phase portraits of the Leslie-Gower model for competition among species. We give the complete description of their phase portraits in the Poincaré disc (i.e., in the compactification of ℝ2 adding the circle \({\mathbb{S}^1}\) of the infinity) modulo topological equivalence.

It is well-known that the equilibrium point of the Leslie-Gower model in the interior of the positive quadrant is a global attractor in this open quadrant, and in this paper we characterize where the orbits attracted by this equilibrium born.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bacaër N. A Short History of Mathematical Population Dynamics. Springer-Verlag, 2011

  2. Bazykin A. Nonlinear Dynamics of Interacting Populations. World Scientific Publishing Co Pte Ltd, 1998

  3. Berryman A A, Gutierrez A P, Arditi R. Credible, parsimonious and useful predator-prey models. A reply to Abrams, Gleeson and Sarnelle. Ecology, 1995, 76: 1980–1985

    Article  Google Scholar 

  4. Dumortier F, Llibre J, Artés J C. Qualitative Theory of Planar Differential Systems. Springer, 2006

  5. Gonzalez-Olivares E, Rojas-Palma A. Global stability in a modified Leslie-Gower type predation model assuming mutual interference among generalist predators. Math Biosci Eng, 2020, 17: 7708–7731

    Article  MathSciNet  Google Scholar 

  6. Han Q, Chen L, Jiang D. Periodic solution and stationary distribution for stochastic predator-prey model with modified Leslie-Gower and Holling type II schemes. Filomat, 2020, 34: 1383–1402

    Article  MathSciNet  Google Scholar 

  7. Hou Z. Geometric method for global stability of discrete population models. Discrete Contin Dyn Syst Ser B, 2020, 25: 3305–3334

    MathSciNet  MATH  Google Scholar 

  8. Junior A B, Maidana N A. A modified Leslie-Gower predator-prey model with alternative food and selective predation of noninfected prey. Math Methods Appl Sci, 2021, 44: 3441–3467

    Article  MathSciNet  Google Scholar 

  9. Leslie P H, Gower J C. The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrika, 1960, 47: 219–234

    Article  MathSciNet  Google Scholar 

  10. Liu Y, Wei J. Spatiotemporal dynamics of a modified Leslie-Gower model with weak Allee effect. Internat J Bifur Chaos Appl Sci Engrg, 2020, 30: 2050169

    Article  MathSciNet  Google Scholar 

  11. Ma R, Bai Y, Wang F. Dynamical behavior analysis of a two-dimensional discrete predator-prey model with prey refuge and fear factor. J Appl Anal Comput, 2020, 10: 1683–1697

    MathSciNet  MATH  Google Scholar 

  12. Ma L, Liu B. Dynamic analysis and optimal control of a fractional order singular Leslie-Gower prey-predator model. Acta Math Sci, 2020, 40B: 1525–1552

    Article  MathSciNet  Google Scholar 

  13. Markus L. Global structure of ordinary differential equations in the plane. Trans Amer Math Soc, 1954, 76: 127–148

    Article  MathSciNet  Google Scholar 

  14. May R M. Stability and Complexity in Model Ecosystems. 2nd ed. Princeton University Press, 2001

  15. Murray J D. Mathematical Biology. New-York: Springer-Verlag, 1989

    Book  Google Scholar 

  16. Neumann D A. Classification of continuous flows on 2-manifolds. Proc Amer Math Soc, 1975, 48: 73–81

    Article  MathSciNet  Google Scholar 

  17. Peixoto M. Dynamical systems//Proceedings of a Symposium Held at the University of Bahia. New York: Acad Press, 1973: 389–420

    Google Scholar 

  18. Poincaré H. Mémoire sur les courbes définies par les équations différentielles. J Math, 1881, 37: 375–422; Oeuvres de Henri Poincaré, vol I. Gauthier-Villars, Paris, 1951: 3–84

    MATH  Google Scholar 

  19. Puchuri L, González-Olivares E, Rojas-Palma A. Multistability in a Leslie-Gower-type predation model with a rational nonmonotonic functional response and generalist predators. Comput Math Methods, 2020, 2: e1070

    Article  MathSciNet  Google Scholar 

  20. Singh A, Preeti M, Malik P. Hopf bifurcation and chaos in a Leslie-Gower prey-predator model with discrete delays. Int J Biomath, 2020, 13: 2050048

    Article  MathSciNet  Google Scholar 

  21. Su J. Degenerate Hopf bifurcation in a Leslie-Gower predator-prey model with predator harvest. Adv Difference Equ, 2020, Art 194

  22. Tiwari V, Tripathi J P, Upadhyay R K, Ranjit K, Wu Y P, Wang J S, Sun G Q. Predator-prey interaction system with mutually interfering predator: role of feedback control. Appl Math Model, 2020, 87: 222–244

    Article  MathSciNet  Google Scholar 

  23. Tsvetkov D, Angelova-Slavova R. Positive periodic solutions for periodic predator-prey systems of Leslie-Gower or Holling-Tanner type. Nonlinear Stud, 2020, 27: 991–1002

    MathSciNet  MATH  Google Scholar 

  24. Turchin P. Complex population dynamics. A theoretical/empirical synthesis//Monographs in Population Biology 35. Princeton University Press, 2003

  25. Volterra V. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Memorie della R. Accademia dei Lincei, S.VI, IT 1926; II: 31–113

  26. Wang X, Tan Y, Cai Y, Wang W. Impact of the fear effect on the stability and bifurcation of a Leslie-Gower predator-prey model. Internat J Bifur Chaos Appl Sci Engrg, 2020, 30: 2050210

    Article  MathSciNet  Google Scholar 

  27. Wu F. Propagation threshold in an integrodifference predator-prey system of Leslie-Gower type. J Difference Equ Appl, 2021, 27: 26–40

    Article  MathSciNet  Google Scholar 

  28. Yan X P, Zhang C H. Stability of a delayed diffusive predator-prey model with prey harvesting of Michaelis-Menten type. Appl Math Lett, 2021, 114: 106904

    Article  MathSciNet  Google Scholar 

  29. Ye P, Wu D. Impacts of strong Allee effect and hunting cooperation for a Leslie-Gower predator-prey system. Chinese J Phys, 2020, 68: 49–64

    Article  MathSciNet  Google Scholar 

  30. Zhao H, Wu D. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete Contin Dyn Syst Ser S, 2020, 13: 3271–3284

    MathSciNet  MATH  Google Scholar 

  31. Zou R, Guo S. Dynamics of a Leslie-Gower predator-prey system with cross-diffusion. Electron J Qual Theory Differ Equ, 2020, Art 65

  32. Zou R, Guo S. Dynamics of a diffusive Leslie-Gower predator-prey model in spatially heterogeneous environment. Discrete Contin Dyn Syst Ser B, 2020, 25: 4189–4210

    MathSciNet  MATH  Google Scholar 

  33. Zuo WQ, Ma Z P, Cheng Z B. Spatiotemporal dynamics induced by Michaelis-Menten type prey harvesting in a diffusive Leslie-Gower predator-prey model. Internat J Bifur Chaos Appl Sci Engrg, 2020, 30: 2050204

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Valls.

Additional information

The first author was supported by the Agencia Estatal de Investigación grant PID2019-104658GB-I00 and the H2020 European Research Council grant MSCA-RISE-2017-777911. The second author was partially supported by FCT/Portugal through CAMGSD, IST-ID, projects UIDB/04459/2020 and UIDP/04459/2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llibre, J., Valls, C. Phase Portraits of the Leslie-Gower System. Acta Math Sci 42, 1734–1742 (2022). https://doi.org/10.1007/s10473-022-0502-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-022-0502-4

Key words

2010 MR Subject Classification

Navigation