Skip to main content
Log in

A fully integrated 2.4 dB NF capacitive cross coupling CG-LNA for LTE band

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a common gate low noise amplifier utilizing a passive feedback network that provides a competitive and highly integrated front-end solution for mobile handset devices. This design utilizes a resistive load instead of the inductive one used in other designs to reduce the on-chip silicon area. The design does not need an external matching network which decrease the area of the PCB while achieving a sufficient input impedance matching, S11. It achieves a measured gain higher than 20 dB, noise figure less than 3 dB and input referred third order intercept point (IIP3) value higher than − 2.5 dBm at 2.3 GHz. The design is implemented in 65 nm UMC CMOS technology, occupies a total area of 0.065 mm2 and consumes 5 mW from a 1.4 V supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang, Y., Ye, L., Liao, H., Huang, R., & Wang, Y. (2015). Highly reconfigurable analog baseband for multistandard wireless receivers in 65-nm CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(3), 296–300.

    Article  Google Scholar 

  2. Chen, K. H., & Liu, S. I. (2012). Inductorless wideband CMOS low-noise amplifiers using noise-canceling technique. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(2), 305–314.

    Article  MathSciNet  Google Scholar 

  3. Tsai, M. D., Liao, C. F., Wang, C. Y., Lee, Y. B., Tzeng, B., Dehng, G. K. (2014). A multi-band inductor-less SAW-less 2G/3G-TD-SCDMA cellular receiver in 40 nm CMOS. In: Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International 9 Feb 2014 (pp. 354–355).

  4. Strange, J., Chang, HH., Muller, P., Ali-Ahmad, W., Beghein, C., Abdeljelil, FB., Lee, WC., Chiu, C., Sin, TY., Lin, TH., Ivory, D. A (2014). HSPA+/WCDMA/EDGE 40 nm modem SoC with embedded RF transceiver supporting RX diversity. In: Radio Frequency Integrated Circuits Symposium, 2014 IEEE 1 Jun 2014 (pp. 133–136).

  5. Xie, H., Oliaei, O., Rakers, P., Fernandez, R., Xiang, J., Parkes, J., et al. (2012). Single-chip multiband EGPRS and SAW-less LTE WCDMA CMOS receiver with diversity. IEEE Transactions on Microwave Theory and Techniques, 60(5), 1390–1396.

    Article  Google Scholar 

  6. Georgantas, T., Vavelidis, K., Haralabidis, N., Bouras, S., Vassiliou, I., Kapnistis, C., Kokolakis, Y., Peyravi, H., Theodoratos, G., Vryssas, K., Kanakaris, N. (2015). A 13 mm2 40 nm multiband GSM/EDGE/HSPA+/TDSCDMA/LTE transceiver. In: Solid-State Circuits Conference-(ISSCC), 2015 IEEE International 22 Feb 2015 (pp. 1–3).

  7. Abdelhamid, A. A., Ozgun, M. T., Dogan, H (2016). A highly integrated wideband LNA with multiple inputs for multi-band mobile devices. In: Circuits and Systems (MWSCAS), 2016 IEEE 59th International Midwest Symposium on 16 Oct 2016 (pp. 1–4).

  8. Moreira, J., Leuschner, S., Stevanovic, N., Pretl, H., Pfann, P., Thüringer, R., Kastner, M., Pröll, C., Schwarz, A., Mrugalla, F., Saporiti, J. (2015). A single-chip HSPA transceiver with fully integrated 3G CMOS power amplifiers. In: Solid-State Circuits Conference-(ISSCC), 2015 IEEE International 22 Feb 2015 (pp. 1–3).

  9. Beffa, F., Sin, TY., Tanzil, A., Ivory, D., Tenbroek, B., Strange, J., Ali-Ahmad, W. (2011). A receiver for WCDMA/EDGE mobile phones with inductorless front-end in 65 nm CMOS. In: Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International 20 Feb 2011 (pp. 370-372).

  10. Zhuo, W., Li, X., Shekhar, S., Embabi, S. H., de Gyvez, J. P., Allstot, D. J., et al. (2005). A capacitor cross-coupled common-gate low-noise amplifier. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(12), 875–879.

    Article  Google Scholar 

  11. Sobhy, E. A., Helmy, A. A., Hoyos, S., Entesari, K., & Sánchez-Sinencio, E. (2011). A 2.8-mW sub-2-dB noise-figure inductorless wideband CMOS LNA employing multiple feedback. IEEE Transactions on Microwave Theory and Techniques, 59(12), 3154–3161.

    Article  Google Scholar 

  12. Han, H. G., Jung, D. H., & Kim, T. W. (2015). A 2.88 mW + 9.06 dBm IIP3 common-gate LNA with dual cross-coupled capacitive feedback. IEEE Transactions on Microwave Theory and Techniques, 63(3), 1019–1025.

    Article  Google Scholar 

  13. Zhuo, W., Embabi, S., de Gyvez, JP., Sánchez-Sinencio, E. (2000) Using capacitive cross-coupling technique in RF low noise amplifiers and down-conversion mixer design. In: Solid-State Circuits Conference, 2000. ESSCIRC00. In: Proceedings of the 26 European 19 Sep 2000 (pp. 77–80). IEEE.

Download references

Acknowledgements

This work was supported by Tubitak Grant 113E201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr A. Abdelhamid.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelhamid, A.A., Ozgun, M.T. & Dogan, H. A fully integrated 2.4 dB NF capacitive cross coupling CG-LNA for LTE band. Analog Integr Circ Sig Process 99, 159–166 (2019). https://doi.org/10.1007/s10470-019-01399-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01399-w

Keywords

Navigation