Skip to main content
Log in

Wide band digital predistortion using iterative feedback decomposition

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a new digital predistortion (DPD) technique for wide band applications. Digital predistortion is the most useful linearization technique to reduce power amplifier (PA) nonlinearity effects due to its high flexibility and low complexity. However, this technique requires high performances ADC to digitize the feedback signal whose bandwidth is equal to several times the original bandwidth due to spectral regrowth generated by the PA nonlinearity. This point represents one of the main bottlenecks for the deployment of the wideband LTE-A standard. The method proposed in this paper calculates the DPD coefficients iteratively using an ADC with a fixed bandwidth equal to the original bandwidth. The proposed method has been simulated and compared with other methods using Matlab. Simulation results show that the proposed method has almost the same performance as the other methods with an ACPR of − 60 dB. Moreover, it reduces considerably the constraints on the ADC and the power calculation resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. The implementation of this subband decomposition is not discussed in [11] but requires an adequate implementation which is discussed in the end of the current section.

References

  1. Qualcomm. The 1000x data challenge. 2013. https://www.qualcomm.com/ invention/1000x.

  2. Mämmelä, A. (2015). Energy efficiency in 5G networks. In IFIP networking 2015, Toulouse, France. May 20, 2015.

  3. Hasan, Z., Boostanimehr, H., & Bhargava, V. K. (2011). Green cellular networks: A survey, some research issues and challenges. IEEE Communications Surveys & Tutorials, 13, 524–540.

    Article  Google Scholar 

  4. Li, F. (2015). Linearization of power amplifiers in wide band communication systems by digital baseband predistortion technique. PhD thesis. Universite de Nantes.

  5. Soury, A., & Ngoya, E. (2005). Modeling long term memory effects in microwave power amplifiers for system level simulations. Annales Des Télécommunications, 60(11), 1488–1506.

    Google Scholar 

  6. Berland, C., Bercher, J.-F., & Venard, O. (2010). Adaptive gain and delay mismatch cancellation for LINC transmitter. Analog Integrated Circuits and Signal Processing, 65(1), 151–156.

    Article  Google Scholar 

  7. Tabatabai, F., & Al-Raweshidy, H. S. (2007). Feedforward linearization technique for reducing nonlinearity in semiconductor optical amplifier. Journal of Lightwave Technology, 25(9), 2667–2674.

    Article  Google Scholar 

  8. Vuolevi, J. H. K., Rahkonen, T., & Manninen, J. P. A. (2001). Measurement technique for characterizing memory effects in RF power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 49(8), 1383–1389.

    Article  Google Scholar 

  9. Guan, L., & Zhu, A. (2014). Green communications: Digital predistortion for wideband RF power amplifiers. IEEE Microwave Magazine, 15(7), 84–99.

    Article  Google Scholar 

  10. Liu, Y. et al. (2014). A new digital predistortion using indirect learning with constrained feedback bandwidth for wideband power amplifiers. In IEEE MTT-S international microwave symposium digest (pp. 0–2).

  11. Hussein, M. A., & Venard, O. (2014). Subband digital predistorsion based on Indirect Learning Architecture. In ICASSP, IEEE international conference on acoustics, speech and signal processing—Proceedings (pp. 7974–7978).

  12. Naraharisetti, N., et al. (2013). Quasi-exact inverse PA model for digital predistorter linearization. In 82nd ARFTG microwave measurement conference (pp. 1–4).

  13. Liu, Y. (2014). Novel technique for wideband digital predistortion of power amplifiers with an under-sampling ADC. IEEE Transactions on Microwave Theory and Techniques, 62(11), 2604–2617.

    Article  Google Scholar 

  14. Zhang, L., & Feng, Y. (2014) An improvement iterative approach for wideband digital predistortion using under-sampling. In: 2014 IEEE China summit international conference on signal and information processing (ChinaSIP) (pp. 664–667).

  15. Singla, R., & Sharma, S. (2012). Digital predistortion of power amplifiers using look-up table method with memory effects for LTE wireless systems. EURASIP Journal on Wireless Communications and Networking2012(1), 330.

    Article  Google Scholar 

  16. Saleh, A. A. M. (1981). Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers. IEEE Transactions on Communications, 29(11), 1715–1720.

    Article  Google Scholar 

  17. Mkadem, F., et al. (2014). Complexity-reduced Volterra series model for power amplifier digital predistortion. Analog Integrated Circuits and Signal Processing, 79(2), 331–343.

    Article  Google Scholar 

  18. Boulejfen, N., et al. (2010). Analytical prediction of spectral regrowth and correlated and uncorrelated distortion in multicarrier wireless transmitters exhibiting memory effects. IET Microwaves, Antennas & Propagation, 4(6), 685.

    Article  Google Scholar 

  19. Ding, L. (2006). A least-squares/Newton method for digital predistortion of wideband signals. IEEE Transactions on Communications, 54(5), 833–840.

    Article  Google Scholar 

  20. Pham, D. K. G., et al. (2013). High-level design of general multi-stage noise band cancellation Sigma Delta ADC optimized for nonlinearly distorted signals. Analog Integrated Circuits and Signal Processing, 77(2), 235–245.

    Article  Google Scholar 

  21. Pham, D. K. G., et al. (2012). Multi-stage noise band cancellation modulator for digitisation of distorted signals. Electronics Letters, 48(10), 560.

    Article  Google Scholar 

  22. Ding, L. (2004). A robust digital baseband predistorter constructed using memory polynomials. IEEE Transactions on Communications, 52(1), 159–165.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Shokair.

Appendix: Proof of the method validity

Appendix: Proof of the method validity

The figures in this section have identical architecture to that shown in Sect. 3, with some modification in the view, to make explicit the proof steps. Moreover, for sake of clarity, the subband decomposition is modeled with filters though it will be implemented differently. In this section we consider a PA of nonlinearity order 7.

1.1 1st step: 7th order identification

In the first step, the BPF will select the subband holding information on the 7th order nonlinearity (2.5–3.5 BW).

By construction (according to Fig. 18), and since only inputs relevant part of the input signal is being considered:

$$\begin{aligned} {\mathbf{y}}_{{P17}} & = {\mathbf{Y}}_{{CH}}^{{1,7}} \cdot {\mathbf{c}}^{{1,7}} = \left[ {{\mathbf{Y}}_{{CH}}^{1} {\mathbf{Y}}_{{CH}}^{7} } \right] \cdot \left( {\begin{array}{*{20}l} {{\mathbf{c}}^{{{\kern 1pt} 1}} } \hfill \\ {{\mathbf{c}}^{{{\kern 1pt} 7}} } \hfill \\ \end{array} } \right) \\ & = {\mathbf{Y}}_{{CH}}^{1} \cdot {\mathbf{c}}^{{{\kern 1pt} 1}} + {\mathbf{Y}}_{{CH}}^{7} \cdot {\mathbf{c}}^{{{\kern 1pt} 7}} . \\ \end{aligned}$$
(A.1)

and

$$\begin{aligned} {\mathbf{z}}_{P7} = {\mathbf{y}}_{P17} + {\mathbf{y}}_{IM7} \end{aligned}$$
(A.2)

where using Eq. A.1 gives:

$$\begin{aligned} {\mathbf{z}}_{P7} = \left[ {\mathbf{Y}}_{CH}^{1} {\mathbf{Y}}_{CH}^{7} \right] \cdot \begin{pmatrix} {\mathbf{c}}^{\,1}\\ {\mathbf{c}}^{\,7}\end{pmatrix} + {\mathbf{y}}_{IM7}. \end{aligned}$$
(A.3)

The identification process based on minimizing the error \(\left( {\mathbf{e}} \rightarrow {\mathbf{0}} \right)\) will result in having:

$$\begin{aligned} {\mathbf{u}}={\mathbf{x}}\simeq {\mathbf{z}}_{P7}. \end{aligned}$$
(A.4)

Therefore the first order and seventh order DPD coefficients are obtained by:

$$\left( {\begin{array}{*{20}l} {{\hat{\mathbf{c}}}^{{{\kern 1pt} 1}} } \\ {{\hat{\mathbf{c}}}^{{{\kern 1pt} 7}} } \\ \end{array} } \right) = \left[ {{\mathbf{Y}}_{{CH}}^{1} {\mathbf{Y}}_{{CH}}^{7} } \right]^{{ - 1}} \cdot \left( {{\mathbf{z}}_{{P7}} - {\mathbf{y}}_{{IM7}} } \right).$$
(A.5)

Once the solution is computed, the 7th order terms are computed by:

$${\mathbf{Y}}_{{CH}}^{7} \cdot {\hat{\mathbf{c}}}^{7} = {\mathbf{z}}_{{P7}} - {\mathbf{y}}_{{IM7}} - {\mathbf{Y}}_{{CH}}^{1} \cdot {\hat{\mathbf{c}}}^{1} .$$
(A.6)
Fig. 18
figure 18

Block diagram of the system at the 1st step

1.2 2nd step—5th order identification

In the second step (iteration), the 1st and 7th order coefficients are already estimated, then both could be used in the estimation of the 5th order coefficients as following:

By construction (according to Fig. 19):

$$\begin{aligned} {\mathbf{y}}_{P15} &= {\mathbf{Y}}_{CH}^{1,5} \cdot {\mathbf{c}}^{1,5} = \left[ {\mathbf{Y}}_{CH}^{1} {\mathbf{Y}}_{CH}^{5} \right] \cdot \begin{pmatrix} {\mathbf{c}}^{\,1}\\ {\mathbf{c}}^{\,5} \end{pmatrix}\\ &= {\mathbf{Y}}_{CH}^{1} \cdot {\mathbf{c}}^{\,1} + {\mathbf{Y}}_{CH}^{5} \cdot {\mathbf{c}}^{\,5}. \end{aligned}$$
(A.7)

and

$$\begin{aligned} {\mathbf{z}}_{P5} = {\mathbf{y}}_{P15} + {\mathbf{y}}_{IM5} + {\mathbf{y}}_{P7} \end{aligned}$$
(A.8)

where using Eq. A.7 gives:

$$\begin{aligned} {\mathbf {z}}_{P5} = \left[ {\mathbf {Y}}_{CH}^{1} {\mathbf {Y}}_{CH}^{5} \right] \cdot \begin{pmatrix} {\mathbf {c}}^{\,1}\\ {\mathbf {c}}^{\,5}\end{pmatrix} + {\mathbf {y}}_{IM5} + {\mathbf {Y}}_{CH}^{7} \cdot {\hat {\mathbf{c}}}^{\,7}. \end{aligned}$$
(A.9)

The identification process based on minimizing the error \(\left( {\mathbf{e}} \rightarrow {\mathbf{0}} \right)\) will result in having:

$$\begin{aligned} {\mathbf{u}}={\mathbf{x}}\simeq {\mathbf{z}}_{P5}. \end{aligned}$$
(A.10)

Therefore the 5th order coefficients are obtained by:

$$\left( {\begin{array}{*{20}c} {{\hat{\mathbf{c}}}^{1} } \\ {{\hat{\mathbf{c}}}^{5} } \\ \end{array} } \right) = \left[ {{\mathbf{Y}}_{{CH}}^{1} {\mathbf{Y}}_{{CH}}^{5} } \right]^{{ - 1}} \cdot \left( {{\mathbf{z}}_{{P5}} - {\mathbf{y}}_{{IM5}} - {\mathbf{Y}}_{{CH}}^{7} \cdot {\hat{\mathbf{c}}}^{7} } \right),$$
(A.11)

and the 5th order terms are computed by:

$${\mathbf{Y}}_{{CH}}^{5} \cdot {\hat{\mathbf{c}}}^{5} = {\mathbf{z}}_{{P5}} - {\mathbf{y}}_{{IM5}} - {\mathbf{Y}}_{{CH}}^{1} \cdot {\hat{\mathbf{c}}}^{1} - {\mathbf{Y}}_{{CH}}^{7} \cdot {\hat{\mathbf{c}}}^{7} .$$
(A.12)
Fig. 19
figure 19

Block diagram of the system at the 2nd step

1.3 3rd step: 1st and 3rd order identification

Now, after 1st, 5th, 7th coefficients are estimated, 3rd order coefficients could be estimated, after applying a BPF on the out of band feedback path, allowing the band ranging from \(0.5\,\)BW to \(1.5\,\)BW as following:

By construction (according to Fig. 20):

$$\begin{aligned} {\mathbf{y}}_{P13} &= {\mathbf{Y}}_{CH}^{1,3} \cdot {\mathbf{c}}^{1,3} = \left[ {\mathbf{Y}}_{CH}^{1} {\mathbf{Y}}_{CH}^{3} \right] \cdot \begin{pmatrix} {\mathbf{c}}^{\,1}\\ {\mathbf{c}}^{\,3} \end{pmatrix}\\ &= {\mathbf{Y}}_{CH}^{1} \cdot {\mathbf{c}}^{\,1} + {\mathbf{Y}}_{CH}^{3} \cdot {\mathbf{c}}^{\,3}. \end{aligned}$$
(A.13)

and

$$\begin{aligned} {\mathbf{z}}_{P3} = {\mathbf{y}}_{P13} + {\mathbf{y}}_{IM3} + {\mathbf{y}}_{P5} + {\mathbf{y}}_{P7} \end{aligned}$$
(A.14)

where using Eq. A.13 gives:

$${\mathbf{z}}_{{P3}} = \left[ {{\mathbf{Y}}_{{CH}}^{1} {\mathbf{Y}}_{{CH}}^{3} } \right] \cdot \left( {\begin{array}{*{20}c} {{\mathbf{c}}^{1} } \\ {{\mathbf{c}}^{3} } \\ \end{array} } \right) + {\mathbf{y}}_{{IM3}} + \left[ {{\mathbf{Y}}_{{CH}}^{5} {\mathbf{Y}}_{{CH}}^{7} } \right] \cdot \left( {\begin{array}{*{20}c} {{\hat{\mathbf{c}}}^{5} } \\ {{\hat{\mathbf{c}}}^{7} } \\ \end{array} } \right).$$
(A.15)

The identification process based on minimizing the error \(\left( {\mathbf{e}} \rightarrow {\mathbf{0}} \right)\) will result in having:

$$\begin{aligned} {\mathbf{u}}={\mathbf{x}}\simeq {\mathbf{z}}_{P1}. \end{aligned}$$
(A.16)

Therefore the 3rd order coefficients are obtained by:

$$\left( {\begin{array}{*{20}c} {{\hat{\mathbf{c}}}^{1} } \\ {{\hat{\mathbf{c}}}^{3} } \\ \end{array} } \right) = \left[ {{\mathbf{Y}}_{{CH}}^{1} {\mathbf{Y}}_{{CH}}^{3} } \right]^{{ - 1}} \cdot \left( {{\mathbf{z}}_{{P3}} - {\mathbf{y}}_{{IM3}} - {\mathbf{Y}}_{{CH}}^{5} \cdot {\hat{\mathbf{c}}}^{5} - {\mathbf{Y}}_{{CH}}^{7} \cdot {\hat{\mathbf{c}}}^{7} } \right),$$
(A.17)

and the 3rd order terms are computed by:

$$\begin{aligned} \mathbf{Y}_{CH}^{3} \cdot \hat{\mathbf{c}}^{\,3} = \mathbf{z}_{P3} - \mathbf{y}_{IM3} - \mathbf{Y}_{CH}^{1} \cdot \hat{\mathbf{c}}^{\,1} -\mathbf{Y}_{CH}^{5} \cdot \hat{\mathbf{c}}^{\,5} -\mathbf{Y}_{CH}^{7} \cdot \hat{\mathbf{c}}^{\,7}. \end{aligned}$$
(A.18)
Fig. 20
figure 20

Block diagram of the system at the 3rd step

1.4 4th step—1st order identification

Finally the 1st order coefficients are to be estimated, by taking only the in-band part of the feedback signal.

By construction (according to Fig. 21):

$$\begin{aligned} {\mathbf{y}}_{P1} = {\mathbf{Y}}_{CH}^{1} \cdot {\mathbf{c}}^{1} \end{aligned}$$
(A.19)

and

$$\begin{aligned} {\mathbf{z}}_{P1} = {\mathbf{y}}_{P1} + {\mathbf{y}}_{P3} + {\mathbf{y}}_{P5} + {\mathbf{y}}_{P7} \end{aligned}$$
(A.20)

which can be written using the estimated parameters:

$${\mathbf{z}}_{{P1}} = {\mathbf{Y}}_{{CH}}^{1} \cdot {\mathbf{c}}^{1} + \left[ {{\mathbf{Y}}_{{CH}}^{3} {\mathbf{Y}}_{{CH}}^{5} {\mathbf{Y}}_{{CH}}^{7} } \right] \cdot \left( {\begin{array}{*{20}c} {{\hat{\mathbf{c}}}^{3} } \\ {{\hat{\mathbf{c}}}^{5} } \\ {{\hat{\mathbf{c}}}^{7} } \\ \end{array} } \right).$$
(A.21)

The identification process based on minimizing the error \(\left( {\mathbf{e}} \rightarrow {\mathbf{0}} \right)\) will result in having:

$$\begin{aligned} {\mathbf{u}}={\mathbf{x}}\simeq {\mathbf{z}}_{P1}, \end{aligned}$$
(A.22)

Therefore the 1st order coefficients can be obtained by:

$${\hat{\mathbf{c}}}^{1} = {\mathbf{Y}}_{{CH}}^{1} {\mkern 1mu} _{{}}^{{ - 1}} \cdot \left( {{\mathbf{z}}_{{P1}} - {\mathbf{Y}}_{{CH}}^{3} \cdot {\hat{\mathbf{c}}}^{3} - {\mathbf{Y}}_{{CH}}^{5} \cdot {\hat{\mathbf{c}}}^{5} - {\mathbf{Y}}_{{CH}}^{7} \cdot {\hat{\mathbf{c}}}^{7} } \right),$$
(A.23)

and the 1st order terms are computed by:

$${\mathbf{Y}}_{{CH}}^{1} \cdot {\hat{\mathbf{c}}}^{1} = {\mathbf{z}}_{{P1}} - {\mathbf{Y}}_{{CH}}^{3} \cdot {\hat{\mathbf{c}}}^{3} - {\mathbf{Y}}_{{CH}}^{5} \cdot {\hat{\mathbf{c}}}^{5} - {\mathbf{Y}}_{{CH}}^{7} \cdot {\hat{\mathbf{c}}}^{7} .$$
(A.24)
Fig. 21
figure 21

Block diagram of the system at the extra step

1.5 Verification

We get the complete predistorter by putting all the estimated coefficients together:

$$\begin{aligned} {\mathbf{y}}_{P} & = \left[ {{\mathbf{Y}}_{{CH}}^{1} {\mathbf{Y}}_{{CH}}^{3} {\mathbf{Y}}_{{CH}}^{5} {\mathbf{Y}}_{{CH}}^{7} } \right] \cdot \left( {\begin{array}{*{20}c} {{\hat{\mathbf{c}}}^{1} } \\ {{\hat{\mathbf{c}}}^{3} } \\ {{\hat{\mathbf{c}}}^{5} } \\ {{\hat{\mathbf{c}}}^{7} } \\ \end{array} } \right) \\ {\mathbf{y}}_{P} & = {\mathbf{Y}}_{{CH}}^{1} \cdot {\hat{\mathbf{c}}}^{1} + {\mathbf{Y}}_{{CH}}^{3} \cdot {\hat{\mathbf{c}}}^{3} + {\mathbf{Y}}_{{CH}}^{5} \cdot {\hat{\mathbf{c}}}^{5} + {\mathbf{Y}}_{{CH}}^{7} \cdot {\hat{\mathbf{c}}}^{7} . \\ \end{aligned}$$
(A.25)

Let us replace the first order term by Eq. (A.24) with the assumption \({\mathbf{x}}\simeq {\mathbf{z}}_{P1}\) (Eq. A.22):

$${\mathbf{y}}_{P} = {\mathbf{x}} - {\mathbf{Y}}_{{CH}}^{3} \cdot {\hat{\mathbf{c}}}^{3} - {\mathbf{Y}}_{{CH}}^{5} \cdot {\hat{\mathbf{c}}}^{5} - {\mathbf{Y}}_{{CH}}^{7} \cdot {\hat{\mathbf{c}}}^{7} + {\mathbf{Y}}_{{CH}}^{3} \cdot {\hat{\mathbf{c}}}^{3} + {\mathbf{Y}}_{{CH}}^{5} \cdot {\hat{\mathbf{c}}}^{5} + {\mathbf{Y}}_{{CH}}^{7} \cdot {\hat{\mathbf{c}}}^{7} ,$$
(A.26)

which gives:

$$\begin{aligned} {\mathbf{y}}_P = {\mathbf{x}}. \end{aligned}$$
(A.27)

Therefore, the identified parameters \({\hat{\mathbf{c}}}^{1} ,{\hat{\mathbf{c}}}^{3} ,{\hat{\mathbf{c}}}^{5} ,{\hat{\mathbf{c}}}^{7}\) ideally yield to the ideal linearizer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokair, A., Beydoun, A., Pham, DK.G. et al. Wide band digital predistortion using iterative feedback decomposition. Analog Integr Circ Sig Process 100, 93–108 (2019). https://doi.org/10.1007/s10470-018-1347-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1347-6

Keywords

Navigation