Skip to main content
Log in

Analysis and design of low noise transconductance amplifier for selective receiver front-end

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Analysis and design of a low-noise transconductance amplifier (LNTA) aimed at selective current-mode (SAW-less) wideband receiver front-end is presented. The proposed LNTA uses double cross-coupling technique to reduce noise figure (NF), complementary derivative superposition, and resistive feedback to achieve high linearity and enhance input matching. The analysis of both NF and IIP3 using Volterra series is described in detail and verified by SpectreRF ® circuit simulation showing NF < 2 dB and IIP3 = 18 dBm at 3 GHz. The amplifier performance is demonstrated in a two-stage highly selective receiver front-end implemented in 65 nm CMOS technology. In measurements the front-end achieves blocker rejection competitive to SAW filters with noise figure 3.2–5.2 dB, out of band IIP3 >+17 dBm and blocker P1dB >+5 dBm over frequency range of 0.5–3 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ru, Z., et al. (2009). Digitally enhanced software-defined radio receiver robust to out-of-band interference. Journal of Solid-State Circuits, 44(12), 3359–3375.

    Article  Google Scholar 

  2. Yu, C. Y., et al. (2011). A SAW-less GSM/GPRS/EDGE receiver embedded in 65-nm SoC. IEEE Journal of Solid-State Circuits, 46(12), 3047–4060.

    Article  Google Scholar 

  3. Mirzaei, A., et al. (2011). A 65 nm CMOS quad-band SAW-less receiver SoC for GSM/GPRS/EDGE. IEEE Journal of Solid-State Circuits, 46(4), 946–950.

    Article  Google Scholar 

  4. Murphy, D., Darabi, H., et al. (2012). A blocker-tolerant, noise-cancelling receiver suitable for wideband wireless applications. IEEE Journal of Solid-State Circuits, 47(12), 2943–2963.

    Article  Google Scholar 

  5. Kim, J., & Silva-Martinez, J. (2013). Low-power, low-cost CMOS direct-conversion receiver front-end for multistandard applications. IEEE Journal of Solid-State Circuits, 48(9), 2090–2103.

    Article  Google Scholar 

  6. Fabiano, I., et al. (2013). SAW-less analog front-end receivers for TDD and FDD. IEEE Journal of Solid-State Circuits, 48(12), 3067–3079.

    Article  Google Scholar 

  7. Qazi, F., et al. (2015). Two-stage highly selective receiver front-end based on impedance transformation filtering. IEEE Transactions on Circuit and Systems II, 62(5), 421–425.

    Article  Google Scholar 

  8. Franks, L. E., & Sandberg, I. W. (1960). An alternative approach to the realization of network transfer functions: The N-path filter. Bell System Technical Journal, 39(5), 1321–1350.

    Article  Google Scholar 

  9. Zhang, H., & Sanchez-Sinencio, E. (2011). Linearization techniques for CMOS low noise amplifiers: A tutorial. Transactions on Circuit and Systems, 58(1), 22–36.

    Article  MathSciNet  Google Scholar 

  10. Aparin, V., et al. (2004). Linearization of CMOS LNAs via optimum gate biasing. Proceedings of IEEE International Conference on Circuits and Systems, IV, 748–751.

    Google Scholar 

  11. Kim, T. W., Kim, B., & Lee, K. (2004). Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors. Journal of Solid-State Circuits, 39(1), 223–229.

    Article  Google Scholar 

  12. Aparin, V., et al. (2005). Modified derivative suprposition method for linearizing FET low-noise amplifiers. IEEE Transactions on Microwave Theory Techniques, 53(2), 571–581.

    Article  Google Scholar 

  13. Im, D., et al. (2009). A wideband CMOS low noise amplifier employing noise and IM2 distortion cancellation for a digital TV tuner. Journal of Solid-State Circuits, 44(3), 686–698.

    Article  MathSciNet  Google Scholar 

  14. Geddada, H. M., et al. (2014). Wide-band inductorless low-noise trans-conductance amplifiers with high large-signal linearity. IEEE Transactions on Microwave Theory and Techniques, 62(7), 1495–1505.

    Article  Google Scholar 

  15. Duong, Q.-T., & Dąbrowski, J. (2011). Low noise transconductance amplifier design for continuous-time delta sigma wideband front-end. European Conference on Circuit Theory and Design (ECCTD), 3, 825–828.

    Article  Google Scholar 

  16. Zhang, H., et al. (2009). A low-power, linearized, ultra-wideband LNA design technique. Journal of Solid-State Circuits, 44(2), 320–330.

    Article  Google Scholar 

  17. Woo, S., et al. (2009). A 3.6 mW differential common-gate CMOS LNA with positive-negative feedback. IEEE International Solid-State Circuits Conference—Digest of Technical Papers, ISSCC, 2009, 218–219.

    Google Scholar 

  18. Kim, J., et al. (2010). Wideband common-gate CMOS LNA employing dual negative feedback with simultaneous noise, gain, and bandwidth optimization. IEEE Transactions on Microwave Theory and Techniques, 58(9), 2340–2351.

    Article  Google Scholar 

  19. Bruccoleri, F., et al. (2004). Wide-band CMOS low-noise amplifier exploiting thermal noise canceling. Journal of Solid-State Circuits, 39(2), 275–282.

    Article  Google Scholar 

  20. Zhuo, W., et al. (2000). Using capacitive cross-coupling technique in RF low noise amplifier and down-conversion mixer design. European Solid-State Circuits Conference, ESSCIRC, 3, 77–80.

    Google Scholar 

  21. Reiha, M., & Long, J. (2007). A 1.2 V reactive-feedback 3.1–10.6 GHz low-noise amplifier in 0.13 μm CMOS. Journal of Solid State Circuits, 42(5), 1023–1033.

    Article  Google Scholar 

  22. Chen, W.-H., et al. (2008). A highly linear broadband CMOS LNA employing noise and distortion cancellation. Journal of Solid-State Circuits, 43(5), 1164–1176.

    Article  Google Scholar 

  23. Blaakmeer, S. C., et al. (2008). Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling. Journal of Solid-State Circuits, 43(6), 1341–1350.

    Article  Google Scholar 

  24. Ahsan, N. et al. (2008). Highly linear wideband low power current mode LNA. International Conference on Systems and Electronic Systems, ICSES. doi:10.1109/ICSES.2008.4673361

  25. Amer, A., et al. (2007). A 90-nm wideband merged CMOS LNA and mixer exploiting noise cancellation. Journal of Solid-State Circuits, 42(2), 323–328.

    Article  Google Scholar 

  26. Mehrpoo, M., & Staszewski, R. B. (2013). A highly selective LNTA capable of large-signal handling for RF receiver front-ends. In Proceedings of IEEE RFIC symposium (pp. 185–188).

  27. Zhang, L., et al. (2015). Analysis and design of a 0.6–10.5 GHz LNTA for wideband receivers. Transactions On Circuits and Systems II, Express Briefs, 62(5), 431–435.

    Article  Google Scholar 

  28. Mirzaei, A., et al. (2011). A low-power process-scalable super-heterodyne receiver with integrated high-Q filters. Journal of Solid-State Circuits, 46(12), 2920–2932.

    Article  Google Scholar 

  29. Darvishi, M., et al. (2013). Design of active N-path filters. Journal of Solid-State Circuits, 48(12), 2962–2976.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quoc-Tai Duong.

Appendices

Appendix 1: Derivation of the Volterra operators for the proposed LNTA: G1, G2 and G3

For the circuit shown in Fig. 9 the respective currents and voltages can be expressed as

$$v_{sgp} = \frac{{ - n_{p} v_{in} - R_{sp} (i_{dp} - \frac{{v_{outn} }}{{r_{dp} }})}}{{m_{p} }}$$
(43)
$$v_{gsn} = \frac{{n_{n} v_{in} - R_{sn} (i_{dn} + \frac{{v_{outn} }}{{r_{dn} }})}}{{m_{n} }}$$
(44)
$$v_{sp} = v_{sgp} + \frac{{v_{in} }}{2},v_{sn} = \frac{{v_{in} }}{2} - v_{gsn}$$
(45)
$$v_{outn} = k_{loadn} (i_{dp} - i_{dn} + \frac{{v_{sp} }}{{r_{dp} }} + \frac{{v_{sn} }}{{r_{dn} }})$$
(46)

where

$$m_{p} = 1 + R_{sp} (C_{gsp} s + \frac{1}{{r_{dp} }}),m_{n} = 1 + R_{sn} (C_{gsn} s + \frac{1}{{r_{dn} }})$$
(47)
$$n_{p} = 1 + \frac{{R_{sp} }}{{2r_{dp} }},n_{n} = 1 + \frac{{R_{sn} }}{{2r_{dn} }}$$
(48)
$$k_{p} = \frac{{g_{1p} R_{sp} }}{{m_{p} }},k_{n} = \frac{{g_{1n} R_{sn} }}{{m_{n} }}$$
(49)
$$\hat{Z}_{L} = \frac{{Z_{L} }}{{1 + Z_{L} (\frac{1}{{r_{dp} }} + \frac{1}{{r_{dn} }})}}$$
(50)

Substituting (22, 23) into (43, 44) with maximum 3rd order of v in , we have

$$v_{sgp}^{3} = \frac{{B_{p}^{3} }}{{m_{p}^{3} (1 + k_{p} )^{3} }},v_{gsn}^{3} = \frac{{B_{n}^{3} }}{{m_{n}^{3} (1 + k_{n} )^{3} }}$$
(51)
$$v_{sgp}^{2} = \frac{{B_{p}^{2} }}{{m_{p}^{2} (1 + k_{p} )^{2} }}\left( {1 - \frac{{2R_{sp} g_{2p} B_{p} }}{{m_{p}^{2} (1 + k_{p} )^{2} }}} \right)$$
(52)
$$v_{gsn}^{2} = \frac{{B_{n}^{2} }}{{m_{n}^{2} (1 + k_{n} )^{2} }}\left( {1 - \frac{{2R_{sn} g_{2n} B_{n} }}{{m_{p}^{2} (1 + k_{p} )^{2} }}} \right)$$
(53)
$$v_{sgp}^{{}} = \frac{1}{{m_{p}^{{}} (1 + k_{p} )^{{}} }}\left\{ {B_{p}^{{}} - \frac{{R_{sp} g_{2p} B_{p}^{2} }}{{m_{p}^{2} (1 + k_{p} )^{2} }}\left( {1 - \frac{{2R_{sp} g_{2p} B_{p} }}{{m_{p}^{2} (1 + k_{p} )^{2} }}} \right) - \frac{{R_{sp} g_{3p} B_{p}^{3} }}{{m_{p}^{3} (1 + k_{p} )^{3} }}} \right\}$$
(54)
$$v_{gsn}^{{}} = \frac{1}{{m_{n}^{{}} (1 + k_{n} )^{{}} }}\left\{ {B_{n}^{{}} - \frac{{R_{sn} g_{2n} B_{n}^{2} }}{{m_{n}^{2} (1 + k_{n} )^{2} }}\left( {1 - \frac{{2R_{sn} g_{2n} B_{n} }}{{m_{n}^{2} (1 + k_{n} )^{2} }}} \right) - \frac{{R_{sn} g_{3n} B_{n}^{3} }}{{m_{n}^{3} (1 + k_{n} )^{3} }}} \right\}$$
(55)

where

$$B_{p} = - n_{p} v_{in} + \frac{{R_{sp} }}{{r_{dp} }}v_{outn} ,B_{n} = n_{n} v_{in} - \frac{{R_{sn} }}{{r_{dn} }}v_{outn}$$
(56)

Substituting (22, 23), (45, 5155) into (46), we have

$$\begin{aligned} v_{outn} &= \frac{{\hat{Z}_{L} B_{p} (g_{1p} + \frac{1}{{r_{dp} }})}}{{(1 + k_{p} )m_{p} }} + \frac{{\hat{Z}_{L} B_{p}^{2} }}{{m_{p}^{2} (1 + k_{p} )^{3} }}\left\{ {g_{2p} \left( {1 - \frac{{2R_{sp} g_{2p} B_{p} }}{{m_{p}^{2} (1 + k_{p} )^{2} }}} \right) + \frac{{g_{3p} B_{p}^{{}} }}{{m_{p}^{{}} (1 + k_{p} )^{{}} }}} \right\} \\ &\quad- \,\frac{{\hat{Z}_{L} B_{n} (g_{1n} + \frac{1}{{r_{dn} }})}}{{(1 + k_{n} )m_{n} }} - \frac{{\hat{Z}_{L} B_{n}^{2} }}{{m_{n}^{2} (1 + k_{n} )^{3} }}\left\{ {g_{2n} \left( {1 - \frac{{2R_{sn} g_{2n} B_{n} }}{{m_{n}^{2} (1 + k_{n} )^{2} }}} \right) + \frac{{g_{3n} B_{n}^{{}} }}{{m_{n}^{{}} (1 + k_{n} )^{{}} }}} \right\} \hfill \\ \end{aligned}$$
(57)

Appendix 2: Derivation of the Volterra operators for the proposed LNTA: A1, A2, A3, H1, H2 and H3

For the circuit of Fig. 9 the current and voltage equations follow

$$v_{in} = v_{so} - 2R_{so} i_{so}$$
(58)
$$\begin{aligned} i_{so} &= - sC_{gsp} v_{sgp1} + sC_{gsn} v_{gsn1} + v_{inp} (\frac{1}{{sL_{p} }} + \frac{1}{{sL_{n} }}) + i_{dp2} - i_{dn2} \\ & \quad +\, sC_{gsp} v_{sgp2} - sC_{gsn} v_{gsn2} + \frac{{v_{sp2} - v_{outp} }}{{r_{dp} }} - \frac{{v_{outp} - v_{sn2} }}{{r_{dn} }} \hfill \\ \end{aligned}$$
(59)

where

$$v_{{sgp_{1} }} = v_{{sgp}} \left( {v_{{in}} ,v_{{out}} } \right),v_{{sgp_{2} }} = v_{{sgp}} \left( { - v_{{in}} , - v_{{out}} } \right)$$
(60)
$$v_{{gsn_{1} }} = v_{{gsn}} \left( {v_{{in}} ,v_{{out}} } \right),v_{{gsn_{2} }} = v_{{gsn}} \left( { - v_{{in}} , - v_{{out}} } \right)$$
(61)
$$v_{{sp_{2} }} = v_{{sp}} \left( { - v_{{in}} , - v_{{out}} } \right),v_{{sn_{2} }} = v_{{sn}} \left( { - v_{{in}} , - v_{{out}} } \right)$$
(62)
$$i_{{dp_{2} }} = i_{{dp}} \left( { - v_{{in}} , - v_{{out}} } \right),i_{{dn_{2} }} = i_{{dn}} \left( { - v_{{in}} , - v_{{out}} } \right)$$
(63)

For differential mode, the single voltages should be

$$v_{inp} = - v_{inn} = \frac{{v_{in} }}{2},v_{outp} = - v_{outn} = \frac{{v_{out} }}{2}$$
(64)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duong, QT., Qazi, F. & Dąbrowski, J.J. Analysis and design of low noise transconductance amplifier for selective receiver front-end. Analog Integr Circ Sig Process 85, 361–372 (2015). https://doi.org/10.1007/s10470-015-0629-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0629-5

Keywords

Navigation