Skip to main content
Log in

On the design of active inductors with current-controlled voltage sources

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a novel method of designing active inductors using current-controlled voltage sources (CCVSs). The basic idea consists of designing an equivalent inductor, using only capacitors and CCVSs. The signal-flow graph technique is used for this purpose. The CCVSs are emulated by means of nullator/norator pairs. These elements are then realized using second generation current conveyors (CCIIs), and a combination of CCIIs and operational transconductance amplifiers. In addition, a novel design of simulated inductors using operational transresistance amplifiers is presented. The proposed inductors were used to design filters. SPICE simulations are given to highlight viability and to show good reached results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Comer, D., & Comer, D. (Eds.). (2003). Advanced electronic circuit design. New York: John Wiley & Sons.

    Google Scholar 

  2. Yuce, E., Minaei, S., & Cicekoglu, O. (2006). Limitations of the simulated inductors based on a single current conveyor. IEEE Transactions on Circuits and Systems-I: Regular Papers, 53(12), 2860–2867.

    Article  Google Scholar 

  3. Uyanik, H. U., & Tarim, N. (2007). Compact low voltage high-Q CMOS active inductor suitable for RF applications. Analog Integrated Circuits and Signal Processing, 51, 191–194.

    Article  Google Scholar 

  4. Sagbas, M. (2011). Component reduced floating ±L, ±C and ±R simulators with grounded passive components. International Journal of Electronics and Communications. Article in Press, Available online.

  5. Leifso, C., & Haslett, J. W. (2001). A Fully integrated active inductor with independent voltage tunable inductance and series-loss resistance. The IEEE Transactions on Microwave Theory and Techniques, 49(4), 671–676.

    Article  Google Scholar 

  6. Yan, F. (2008). CMOS active inductors and transformers: Principle, implementation, and applications. New York: Springer.

    Book  Google Scholar 

  7. J.-N. Yang, Y.-C. Cheng, C.-Y. Lee. (2003). A design of CMOS broadband amplifier with high-Q active inductor, The IEEE international workshop on system-on-chip for real-time applications (IWSOC), Calgary, Alberta, Canada, June 30–July 02.

  8. Gao, Z., Ma, J., Yu, M., & Ye, Y. (2005). A CMOS RF bandpass filter based on the active inductor, The International Conference on ASIC (ASICON), October 24–27, Shanghai, China.

  9. Tangsirat, W., Dumawipata, T., Unhavanich, S., & Surakampontorn, W. (2004). Simulation of electronically tunable lossless floating inductor using current-controlled differential current voltage conveyors. The international symposium on communications and information technologies (ISCIT). October 27–29. Sapporo, Japan.

  10. Maundy, B., Gift, S., & Aronhime, P. (2007). A novel hybrid active inductor. The IEEE Transactions on Circuits and Systems–II, Express Briefs, 53(8), 663–667.

    Article  Google Scholar 

  11. Corlosena, A., & Moschyts, G. S. (1993). Nullators and norators in voltage to current mode transformation. The International Journal on Circuit Theory and Applications, 21(4), 421–424.

    Article  Google Scholar 

  12. Haigh, D. G. (1978). Some network transformations by terminal interchange. The IEEE International Symposium on Circuits and Systems (ISCAS). New York, USA.

  13. Pierzchala, M., & Fakhfakh, M. (2009). Novel structures of RC-active filters for tapped capacitor resonant circuits. The European conference on circuit theory and design (ECCTD). August 23–27, Antalya, Turkey.

  14. Cabeza, R., & Carlosena, A. (2000). On the use of symbolic analyzers in circuit synthesis. Analog Integrated Circuits and Signal Processing, 25(1), 67–75.

    Article  Google Scholar 

  15. Agbas, M., Aytenb, U. E., Sedefb, H., & Koksalc, M. (2009). Electronically tunable floating inductance simulator. International Journal of Electronics and Communications, 63, 423–427.

    Article  Google Scholar 

  16. Kuntman, H., Gulsoy, M., & Cicekoglu, O. (2000). Actively simulated grounded lossy inductors using third generation current conveyors. Microelectronics Journal, 31, 245–250.

    Article  Google Scholar 

  17. Fakhfakh, M., Loulou, M., & Tlelo-Cuautle, E. (2007). Synthesis of CCIIs and design of simulated CCII based floating inductances. The IEEE international conference on electronics, circuits and systems (ICECS), December 11–14, Marrakech, Morocco.

  18. Pierzchala, M., & Fakhfakh, M. (2010) Generation of active inductor circuits. The IEEE international symposium on circuits and systems (ISCAS), May 30–June 2, Paris, France.

  19. Lin, P. M. (1991). Symbolic network analysis. Amsterdam: Elsevier.

    MATH  Google Scholar 

  20. Pierzchala, M., Fakhfakh, M., & Rodanski, B. (2010). A novel design of active inductors based on current controlled voltage sources. The international workshop on symbolic and numerical methods, modelling and applications to circuit design (SM2ACD), October 4–6, Gammarth, Tunisia.

  21. Rodanski, B. (2002). Extension of the two-graph method for symbolic analysis of circuits with non-admittance elements. The international workshop on symbolic methods and applications to circuit design (SMACD), October 10–11, Sinaia, Romania.

  22. Svoboda, J. A. (1986). Using nullors to analyse linear networks. International Journal of Circuit Theory and Applications, 14, 169–180.

    Article  MATH  Google Scholar 

  23. Sánchez-López, C. (2010). Modeling active devices with nullors for analog signal processing. In M. Fakhfakh, E. Tlelo-Cuautle, & F. V. Fernández (Eds.), Design of Analog Circuits through Symbolic Analysis. Oak Park: Bentham Science Publishers Ltd.

    Google Scholar 

  24. Iordache, M., & Dumitriu, L. (2006). The generalized topological formula for transfer function generation by two-graph tree enumeration. Analog Integrated Circuits and Signal Processing, 47, 85–100.

    Article  Google Scholar 

  25. OPA 380 datasheet, Burr-Brown Products, from Texas Instruments: http://focus.ti.com/docs/prod/folders/print/opa380.html Accessed May 2011.

  26. Sanchez-Lopez, C., Fernandez, F. V., & Tlelo-Cuautle, E. (2010). Generalized admittance matrix models of OTRAs and COAs. Microelectronics Journal, 41(8), 502–505.

    Article  Google Scholar 

  27. Lo, Y. K., Chien, H. C., & Chiu, H. J. (2008). Switch-controllable OTRA-based bistable multivibrators. The IET Circuits, Devices and Systems, 2(4), 373–382.

    Article  Google Scholar 

  28. Patil, P. T., Mukherjee, G. K., Sharma, A. K., & Mudholkar, R. R. (2009). High-gain transimpedance amplifier (TIA) for night airglow photometer. International Journal of Electronic Engineering Research, 1(2), 109–116.

    Google Scholar 

  29. Hou, C. L., Chien, H. C., & Lo, Y. K. (2005). Squarewave generators employing OTRAs. The IEE Circuits, Devices and Systems, 152(6), 718–722.

    Article  Google Scholar 

  30. Cam, U., Kacar, F., Cicekoglu, O., Kuntman, H., & Kuntman, A. (2004). Novel two OTRA-based grounded immitance simulator topologies. Analog Integrated Circuits and Signal Processing, 39, 169–175.

    Article  Google Scholar 

  31. Kilinc, S., Salama, K. N., & Cam, U. (2006). Realization of fully controllable negative inductance with single operational transresistance amplifier. Circuits Systems Signal Processing, 25(1), 47–57.

    Article  MATH  Google Scholar 

  32. Kafrawy, A. K., & Soliman, A. M. (2009). A modified CMOS differential operational transresistance amplifier (OTRA). International Journal of Electronics and Communications, 63, 1067–1071.

    Article  Google Scholar 

  33. Salamaa, K. N., & Solimanb, A. M. (1999). CMOS operational transresistance amplifier for analog signal processing. Microelectronics Journal, 30, 235–245.

    Article  Google Scholar 

  34. Mostafa, H., & Soliman, A. M. (2006). A modified CMOS realization of the operational transresistance amplifier (OTRA). Frequenz, 60, 3–4.

    Article  Google Scholar 

  35. Duruk, A., & Kuntman, H. (2005). A new CMOS differential OTRA design for the low voltage power supplies in the sub-micron technologies. Turkish Journal of Electrical Engineering and Computer Sciences, 13(1), 23–28.

    Google Scholar 

  36. Daoud, H., Bennour, S., Salem, S. B., & Loulou, M. (2008). Low power SC CMFB folded cascode OTA optimization. The IEEE international conference on electronics, circuits and systems (ICECS), August 31–September 3, Valetta, Malta.

  37. Ben-Salem, S., Fakhfakh, M., Loulou, M., Masmoudi, D. S., Loumeau, P., & Masmoudi, N. (2006). A high performances CMOS CCII and high frequency applications. Analog Integrated Circuits and Signal Processing., 49(1), 71–78.

    Article  Google Scholar 

  38. Tlelo-Cuautle, E., Duarte-Villaseñor, M. A., Reyes-García, C. A., Fakhfakh, M., Loulou, M., Sánchez-López, C., et al. (2007). Designing VFs by applying genetic algorithms from nullator-based descriptions. The European conference on circuit theory and design (ECCTD). August 26–30, Sevilla, Spain.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Pierzchała.

Appendix

Appendix

Below we present the transistor level circuits used for the design of the active inductors. Regarding all the SPICE simulations presented above, the technology under consideration is 0.35 μm. Voltage supply is −1.5 V/+1.5 V. Transistors sizes are taken from [36] for the OTA and from [37] for both the CCII and the VF. See Figs. 30, 31, 32.

Fig. 30
figure 30

The MO-CMOS CCII- [37]

Fig. 31
figure 31

The folded cascode CMOS OTA [36]

Fig. 32
figure 32

The CMOS VF [38]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fakhfakh, M., Pierzchała, M. & Rodanski, B. On the design of active inductors with current-controlled voltage sources. Analog Integr Circ Sig Process 73, 89–98 (2012). https://doi.org/10.1007/s10470-011-9798-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-011-9798-z

Keywords

Navigation