Skip to main content
Log in

Parasitic aware impedance matching techniques for RF amplifiers

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper analyzes the impact of non-idealities of the lumped passive elements (inductor and capacitor) in the matching networks of RF amplifiers. This work infers that the representation of performance matrices of a matching network like sensitivity and harmonic rejection; in terms of input reflection coefficient (S 11) is more convenient than the transfer functions. Expression of S 11 of widely used L-, π- and T-networks have been derived as a function of inductor quality factor (Q L ), capacitor quality factor (Q C ) and transformation ratio. This formulation shows that the matching performance degrades severely due to component non-idealities. To circumvent this degradation, a modified set of design equations have been proposed for the L-network and the same has been extended for π- and T-network. Simulation results show that network synthesized on the basis of proposed set of equations nullify the effect of non-idealities by 70–80% in L-network and 10–20% in π-network but minor improvement in T-network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abrie, P. L. D. (1985). The design of impedance-matching networks for radio-frequency and microwave amplifiers. Norwood, MA: Artech House Inc.

    Google Scholar 

  2. Becciolini, B. (1993). Motorola application note: Impedance matching networks applied to RF power transistors. http://www.rfwireless.rell.compdfsAN_721_D.pdf

  3. Asgaran, S., Deen, M. J., & Chen, C.-H. (1998). Design of the input matching network of RF CMOS LNAs for low power operation. IEEE Journal of Solid-State Circuits, 33(12), 2178–2185.

    Article  Google Scholar 

  4. Lee, H., & Mohammadi, S. (2006). A 3 GHz subthreshold CMOS low noise amplifier, IEEE radio frequency integrated circuits symposium (pp. 494–497). San Francisco, USA.

  5. Sun, Y., & Fidler, J. K. (1994). Design of \(\Uppi\) impedance matching network. In Proceedings of the IEEE international symposium circuits and systems (pp. 5–9). London.

  6. Chung, B. K. (2006). Q-based design method for T network impedance matching. Microelectronics Journal, 37(9), 1007–1011.

    Article  Google Scholar 

  7. Chen, F., & Weber, R. J. (Oct, 2004). A novel process-variation insensitive network for on-chip impedance matching. In IEEE international symposium on communications and information technologies (pp. 43–46, no. 1). Sapporo, Japan

  8. Thompson, M., & Fidler, J. K. (2004). Determination of impedance matching domain of impedance matching networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(10), 2098–2106.

    Article  MathSciNet  Google Scholar 

  9. Han, Y., & Perreault, D. J. (2006). Analysis and design of high efficiency matching networks. IEEE Transactions on Power Electronics, 21(5), 1484–1491.

    Article  Google Scholar 

  10. Lee, T. H. (2004). Design of CMOS radio-frequency integrated circuits. Cambridge: Cambridge University Press.

    Google Scholar 

  11. Pozar, D. M. (2004). Microwave engineering. New York: John Wiley and Sons.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Bhattacharyya.

Appendices

Appendix 1: S-parameter representation of high-pass L-section matching network

The expression for S 11 in terms of Q L and Q C can be derived for the L-match high-pass section as

$$ S_{11}(\omega) = \frac{C}{D} $$
(28)

where,

$$C = \left[\left\{\left(\frac{\omega_0}{\omega}\right)^2 - 1\right\} + \left\{\frac{1}{Q}\left(\frac{\omega_0}{\omega}\right)\left(\frac{1}{Q_C} - \frac{1}{Q_L}\right)\right\}\right] + j\left[ - \left(\frac{\omega_0}{\omega}\right)\frac{1}{QQ_L Q_C} + \left(\frac{\omega_0}{\omega}\right)^2 \frac{1}{Q_C} + \frac{1}{Q_L}\right] D = \left[\left\{1 - \left(\frac{\omega_0}{\omega}\right)^2 \right\} + \left\{\frac{1}{Q}\left(\frac{\omega_0} {\omega}\right)\left(\frac{1}{Q_C} - \frac{1} {Q_L}\right)\right\}+\frac{2}{Q^2} \right] -j\left[\left(\frac{\omega_0}{\omega}\right)\frac{1} {Q}\left(2+\frac{1}{Q_L Q_C}\right) + \left(\frac{\omega_0} {\omega}\right)^2 \frac{1}{Q_C} + \frac{1}{Q_L} + \frac{2} {Q^2 Q_L}\right]$$

Appendix 2: S-parameter representation of π-network

The input reflection coefficient (S 11) of π-section assuming no-loss is expressed as

$$ S_{11} (\omega ) = \frac{M}{N} $$
(29)

where,

$$M = \left(\frac{1}{k} -1\right) - \left(\frac{\omega }{\omega _0 }\right)^2 \frac{Q_0\left(Q_2 - Q_1\right)}{1 + Q_1 ^2 } + j\left(\frac{\omega }{\omega _0 }\right)\left[\frac{Q_0}{1+Q_1^2}-\left(\frac{Q_1}{k}+Q_2 \right) + \left(\frac{\omega }{\omega _0 }\right)^2 \frac{Q_0 Q_1 Q_2 }{1 + Q_1 ^2 }\right] N = \left(\frac{1}{k} +1\right) - \left(\frac{\omega }{\omega _0 }\right)^2 \frac{Q_0\left(Q_2 + Q_1\right)}{1 + Q_1 ^2 } + j\left(\frac{\omega }{\omega _0}\right)\left[\frac{Q_0}{1+Q_1^2}+\left(\frac{Q_1}{k}+Q_2 \right) - \left(\frac{\omega }{\omega _0 }\right)^2 \frac{Q_0 Q_1 Q_2 }{1 + Q_1 ^2 }\right] $$
$$ Q_0=Q_{in},\quad Q_1=Q_{left},\quad Q_2=Q_{right} \quad \hbox{and} \quad k = \frac{R_1}{R_2 } $$

However, in practice components are lossy, then the expression of S 11 in terms of inductor quality factor (Q L ) and capacitor quality factor (Q C ) for π-section network is modified as

$$ S_{11} (\omega ) = \frac{\frac{Z_{in} (\omega )}{R_1 } - 1}{\frac{Z_{in} (\omega )}{R_1} + 1} $$
(30)

where, \(\frac{Z_{in} (\omega )}{R_1} = \frac{P}{Q}\);

$$ P = \frac{1}{k} + \left[ j\left(\frac{\omega }{\omega _0 }\right)\frac{2Q_0}{1 + Q_1 ^2} + \frac{2Q_0} {\left(1 + Q_1 ^2 \right)Q_L }\right] \left[1 +\frac{j\left(\frac{\omega }{\omega _0 }\right)Q_2 }{1 + j\left(\frac{1}{Q_{CR}}\right)\left(\frac{\omega }{\omega_0 } \right)}\right] $$
$$ Q = 1 + j\left(\frac{\omega }{\omega _0}\right)\left[\frac{\frac{Q_1}{k}}{1 + j\left(\frac{1}{Q_{CL}}\right)\left( \frac{\omega }{\omega _0 } \right)} + \frac{Q_2}{1 + j\left(\frac{1}{Q_{CR}}\right)\left( \frac{\omega }{\omega _0 }\right)}\right] + \left[\frac{j\left(\frac{\omega }{\omega _0 }\right)Q_2 }{1 + j\left(\frac{1}{Q_{CR}}\right)\left( \frac{\omega } {\omega _0 } \right)}\right] \left[ j\left(\frac{\omega }{\omega _0 }\right)\frac{2Q_0 }{1 + Q_1 ^2 } + \frac{2Q_0 }{\left(1 + Q_1 ^2 \right)Q_L } \right] \left[ 1 + \frac{j\left(\frac{\omega }{\omega _0}\right)Q_1}{1 + j\left(\frac{1}{Q_{CL}}\right)\left( \frac{\omega }{\omega_0 } \right)} \right] $$

Q CR and Q CL are the right and left side capacitor quality factor.

Appendix 3: S-parameter representation of T-network

The input reflection coefficient (S 11) of T-section assuming no-loss is expressed as

$$ S_{11} (\omega ) = \frac{R}{S} $$
(31)

where

$$ R=\left(k - 1\right) - \left(\frac{\omega }{\omega _0}\right)^2 \frac{Q_0\left(Q_1 - Q_2\right)}{1 + Q_2 ^2 } + j\left(\frac{\omega }{\omega _0}\right)\left[\left(Q_1 + kQ_2 \right) - \frac{2Q_0}{1 + Q_2 ^2 } - \left(\frac{\omega }{\omega _0 }\right)^2 \frac{2Q_0 Q_1 Q_2 }{1 + Q_2 ^2 }\right] S=\left(k + 1\right) - \left(\frac{\omega }{\omega _0 }\right)^2 \frac{Q_0\left(Q_1 + Q_2\right)}{1 + Q_2 ^2 } + j\left(\frac{\omega }{\omega _0}\right)\left[\left(Q_1 + kQ_2 \right) + \frac{2Q_0}{1 + Q_2 ^2 } - \left(\frac{\omega }{\omega _0}\right)^2 \frac{2Q_0 Q_1 Q_2 }{1 + Q_2 ^2 }\right] $$
$$ Q_{0} = Q_{in},\quad Q_1=Q_{left},\quad Q_2=Q_{right} \quad \hbox{and} \quad k = \frac{R_1}{R_2 } $$

The expression of S 11 in terms of inductor quality factor (Q L ) and capacitor quality factor (Q C ) for T-section network can be modified as

$$ S_{11} (\omega ) = \frac{\frac{Z_{in} (\omega )}{{R_1}} -1} {\frac{Z_{in} (\omega )}{R_1} + 1} $$
(32)

where

$$ \frac{Z_{in} (\omega )}{R_1} = \left[\frac{k\left[1 + j\left(\frac{\omega }{\omega_0}\right)Q_2 \left(1 - \frac{j}{Q_{LR} \left(\frac{\omega}{\omega_0}\right)}\right)\right]}{j\left(\frac{\omega} {\omega_0}\right)\frac{2Q_0}{1 + Q_2 ^2}\left(\frac{1}{1 + \frac{j}{Q_C }\left( \frac{\omega }{\omega _0 } \right)}\right)\left[1 + j\left(\frac{\omega }{\omega _0 }\right)Q_2 \left(1 - \frac{j}{Q_{LR} \left( \frac{\omega } {\omega _0 }\right)}\right)\right] + 1}\right] +j\left[\left(\frac{\omega }{\omega _0 }\right)Q_1 \left(1 - \frac{j}{Q_{LL} \left( \frac{\omega }{\omega _0} \right)}\right)\right] $$

Q LR and Q LL are the right and left side inductor quality factor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dasgupta, K., Dutta, A. & Bhattacharyya, T.K. Parasitic aware impedance matching techniques for RF amplifiers. Analog Integr Circ Sig Process 70, 91–102 (2012). https://doi.org/10.1007/s10470-011-9659-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-011-9659-9

Keywords

Navigation