Skip to main content
Log in

Artificial compound eye: a survey of the state-of-the-art

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

An artificial compound eye system is the bionic system of natural compound eyes with much wider field-of-view, better capacity to detect moving objects and higher sensitivity to light intensity than ordinary single-aperture eyes. In recent years, renewed attention has been paid to the artificial compound eyes, due to their better characteristics inheriting from insect compound eyes than ordinary optical imaging systems. This paper provides a comprehensive survey of the state-of-the-art work on artificial compound eyes. This review starts from natural compound eyes to artificial compound eyes including their system design, theoretical development and applications. The survey of artificial compound eyes is developed in terms of two main types: planar and curved artificial compound eyes. Finally, the most promising future research developments are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Bähr R (1974) Contribution to the morphology of chilopod eyes. In: Proceedings of the symposium held at the Zoological Society of London, vol 32, pp 388–404

  • Barshan B, Kuc R (1992) A bat-like sonar system for obstacle localization. IEEE Trans Syst Man Cybern 22(4):636–646

    Article  Google Scholar 

  • Belay GY, Ottevaere H, Meuret Y, Vervaeke M, Van EJ, Thienpont H (2014) Proof-of-concept demonstration of a miniaturized three-channel multiresolution imaging system. In: Proceeding of the SPIE, vol 9138, p 91380B

  • Bräuer A, Brückner A, Wippermann F, Dannberg P, Leitel R (2011) High resolution multichannel imaging systems. In: Proceedings of the IEEE microopics conference, pp 1–2

  • Brückner A, Duparré J, Dannberg P, Bräuer A, Tünnermann A (2007) Artificial neural superposition eye. Opt Express 15(19):11922–11933

    Article  Google Scholar 

  • Brückner A, Duparré J, Bräuer A (2008) Advanced artificial compound-eye imaging systems. In: Proceedings of the SPIE, vol 6887, p 688709

  • Brückner A, Duparré J, Dannberg P, Leitel R, Bräuer A (2010a) Driving micro-optical imaging systems towards miniature camera applications. In: Proceedings of the SPIE, vol 7716, p 77160J

  • Brückner A, Duparré J, Leitel R, Dannberg P, Bräuer A, Tünnermann A (2010b) Thin wafer-level camera lenses inspired by insect compound eyes. Opt Express 18(24):24379–24394

    Article  Google Scholar 

  • Brückner A, Duparré J, Wippermann F, Leitel R, Dannberg P, Bräuer A (2010c) Ultra-compact close-up microoptical imaging system. In: Proceedings of the SPIE, vol 7786, p 77860A

  • Brückner A, Leitel R, Oberdörster A, Dannberg P, Wippermann F, Bräuer A (2011) Multi-aperture optics for wafer-level cameras. J Micro Nanolithogr MEMS MOEMS 10(4):043,010

    Article  Google Scholar 

  • Cao A, Shi L, Shi R, Deng Q, Du C (2012) Image process technique used in a large fov compound eye imaging system. In: Proceedings of the SPIE, vol 8558, p 85581K

  • Cao Z, Zhai C, Wang K (2015) Design of artificial spherical superposition compound eye. Opt Commun 356:218–222

    Article  Google Scholar 

  • Carr PK, Ara F, Thomas PJ, Hornsey RI (2004) Distributed imaging using compound eye sensors. In: Proceedings of the SPIE, vol 5578, pp 454–464

  • Chan WS, Lam EY, Ng MK (2006a) Extending the depth of field in a compound-eye imaging system with super-resolution reconstruction. In: 18th international conference on pattern recognition, vol 3, pp 623–626

  • Chan WS, Lam EY, Ng MK (2006b) Investigation of computational compound-eye imaging system with super-resolution reconstruction. In: IEEE international conference on acoustics speech and signal processing proceedings, vol 4, pp 1177–1180

  • Chan WS, Lam EY, Ng MK, Mak GY (2007) Super-resolution reconstruction in a computational compound-eye imaging system. Multidimens Syst Signal Process 18(2–3):83–101

    Article  MATH  MathSciNet  Google Scholar 

  • Cheng CC, Lin GL (2007) Motion estimation using the single-row superposition-type planar compound-like eye. Sensors 7(7):1047–1068

    Article  Google Scholar 

  • Choi K, Schulz TJ (2008) Signal-processing approaches for image-resolution restoration for tombo imagery. Appl Opt 47(10):B104–B116

    Article  Google Scholar 

  • Christensen MP, Bhakta V, Rajan D, Mirani T, Douglas SC, Wood SL, Haney MW (2006) Adaptive flat multiresolution multiplexed computational imaging architecture utilizing micromirror arrays to steer subimager fields of view. Appl Opt 45(13):2884–2892

    Article  Google Scholar 

  • Clarkson E, Levi-Setti R (1975) Trilobite eyes and the optics of des cartes and huygens. Nature 254(5502):663–667

    Article  Google Scholar 

  • Collett TS, Land MF (1975) Visual control of flight behaviour in the hoverflysyritta pipiens l. J Comp Physiol 99(1):1–66

    Article  Google Scholar 

  • Cronin TW, Johnsen S, Marshall NJ, Warrant EJ (2014) Visual ecology. Princeton University Press, Princeton

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. Murray, London

  • Di S, Lin H, Du R (2009) An artificial compound eyes imaging system based on mems technology. In: Proceedings of the IEEE international conference on robotics and biomimetics, pp 13–18

  • Druart G, Guérineau N, Haïdar R, Lambert E, Tauvy M, Thétas S, Rommeluère S, Primot J, Deschamps J (2008) Multicam: a miniature cryogenic camera for infrared detection. In: Proceedings of the SPIE, vol 6992, p 69920G

  • Druart G, Guérineau N, Haïdar R, Thétas S, Taboury J, Rommeluère S, Primot J, Fendler M (2009) Demonstration of an infrared microcamera inspired by Xenos peckii vision. Appl Opt 48(18):3368–3374

    Article  Google Scholar 

  • Dunkel J, Wippermann F, Brückner A, Reimann A, Müller M, Bräuer A (2014) Fabrication of refractive freeform array masters for artificial compound eye cameras. In: Proceedings of the SPIE, vol 9130, p 91300P

  • Duparré J, Völkel R (2006) Novel optics/micro-optics for miniature imaging systems. In: Proceedings of the SPIE, vol 6196, p 619607

  • Duparré J, Wippermann F (2006) Micro-optical artificial compound eyes. Bioinspir Biomim 1(1):R1–R16

    Article  Google Scholar 

  • Duparré J, Dannberg P, Schreiber P, Bräuer A, Tünnermann A (2004a) Artificial apposition compound eye fabricated by micro-optics technology. Appl Opt 43(22):4303–4310

    Article  Google Scholar 

  • Duparré J, Dannberg P, Schreiber P, Bräuer A, Tünnermann A (2004b) Micro-optically fabricated artificial apposition compound eye. In: Proceedings of the SPIE, vol 5301, pp 25–33

  • Duparré J, Schreiber P, Volkel R (2004c) Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices. In: Proceedings of the SPIE, vol 5249, pp 408–418

  • Duparré J, Dannberg P, Schreiber P, Bräuer A, Tünnermann A (2005a) Thin compound-eye camera. Appl Opt 44(15):2949–2956

    Article  Google Scholar 

  • Duparré J, Schreiber P, Matthes A, Bräuer A, Tünnermann A, Völkel R, Eisner M, Scharf T et al (2005b) Microoptical telescope compound eye. Opt Express 13(3):889–903

    Article  Google Scholar 

  • Duparré J, Wippermann F, Dannberg P, Reimann A (2005c) Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence. Opt Express 13(26):10539–10551

    Article  Google Scholar 

  • Duparré J, Wippermann F, Dannberg P, Schreiber P, Bräuer A, Völkel R, Scharf T (2005d) Microoptical artificial compound eyes: from design to experimental verification of two different concepts. In: Proceedings of the SPIE, vol 5962, p 59622A

  • Duparré J, Radtke D, Tünnermann A (2007) Spherical artificial compound eye captures real images. In: Proceedings of the SPIE, vol 6466, p 64660K

  • Duparré J, Wippermann F, Dannberg P, Bräuer A (2008) Artificial compound eye zoom camera. Bioinspir Biomim 3(4):0460,08

    Article  Google Scholar 

  • El-Sallam AA, Boussaid F (2008) Spectral-based blind image restoration method for thin TOMBO imagers. Sensors 8(9):6108–6124

    Article  Google Scholar 

  • El-Sallam AA, Boussaid F (2009) A high resolution color image restoration algorithm for thin TOMBO imaging systems. Sensors 9(6):4649–4668

    Article  Google Scholar 

  • Fallah HR, Karimzadeh A (2010) MTF of compound eye. Opt Express 18(12):12304–12310

    Article  Google Scholar 

  • Floreano D, Pericet-Camara R, Viollet S, Ruffier F, Brückner A, Leitel R, Buss W, Menouni M, Expert F, Juston R et al (2013) Miniature curved artificial compound eyes. Proc Natl Acad Sci USA 110(23):9267–9272

    Article  Google Scholar 

  • Franceschini N (2014) Small brains, smart machines: from fly vision to robot vision and back again. Proc IEEE 102(5):751–781

    Article  Google Scholar 

  • Gao Y, Liu W, Yang P, Xu B (2012a) Depth estimation based on adaptive support weight and sift for multi-lenslet cameras. In: Proceeding of the SPIE, vol 8419, p 84190C

  • Gao Y, Yang P, Yan H, Xu B (2012b) Digital refocusing of compound images using fourier slice algorithm for thin observation module by bound optics. In: Proceedings of the international congress on image and signal processing, pp 1686–1690

  • Heist S, Sieler M, Breitbarth A, Kühmstedt P, Notni G (2013) High-speed 3D shape measurement using array projection. In: Proceedings of the SPIE, vol 8788, p 878815

  • Hiura S, Mohan A, Raskar R (2011) Krill-eye: Superposition compound eye for wide-angle imaging via GRIN lenses. Inf Media Technol 6(1):144–157

    Google Scholar 

  • Hornsey R, Thomas P, Wong W, Pepic S, Yip K, Krishnasamy R (2004) Electronic compound-eye image sensor: construction and calibration. In: Proceedings of the SPIE, vol 5301, pp 13–24

  • Horisaki R, Irie S, Nakao Y, Ogura Y, Toyoda T, Masaki Y, Tanida J (2007) 3D information acquisition using a compound imaging system. In: Proceedings of the SPIE, vol 6695, p 66950F

  • Horisaki R, Nakao Y, Toyoda T, Kagawa K, Masaki Y, Tanida J (2008) A compound-eye imaging system with irregular lens-array arrangement. In: Proceedings of the SPIE, vol 7072, p 70720G

  • Horisaki R, Nakao Y, Toyoda T, Kagawa K, Masaki Y, Tanida J (2009) A thin and compact compound-eye imaging system incorporated with an image restoration considering color shift, brightness variation, and defocus. Opt Rev 16(3):241–246

    Article  Google Scholar 

  • Horisaki R, Kagawa K, Nakao Y, Toyoda T, Masaki Y, Tanida J (2010) Irregular lens arrangement design to improve imaging performance of compound-eye imaging systems. Appl Phys Express 3(2):022,501

    Article  Google Scholar 

  • Horridge GA (1977) Insects which turn and look. Endeavour 1(1):7–17

    Article  Google Scholar 

  • Horridge GA (1978) The separation of visual axes in apposition compound eyes. Philos Trans R Soc B 285(1003):1–59

    Article  Google Scholar 

  • Horridge GA (1987) The evolution of visual processing and the construction of seeing systems. Proc R Soc Lond B Biol Sci 230(1260):279–292

    Article  Google Scholar 

  • Huang Z, Xu G (2006) Research on panorama picture formation in bionic compound eye measuring system. Metrol Measur Technol 26(1):17–26

    Google Scholar 

  • Jeong KH, Kim J, Lee LP (2006) Biologically inspired artificial compound eyes. Science 312(5773):557–561

    Article  Google Scholar 

  • Jiang T, Zhu M, Kuhnert KD, Kuhnert L (2014) Distance measuring using calibrating subpixel distances of stereo pixel pairs in artificial compound eye. In: Proceedings of the IEEE international conference on informative and cybernetics for computational social systems, pp 118–122

  • Johnson W (1980) Helicopter theory, Dover edn. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Kagawa K, Tanabe H, Ogata C, Horisaki R, Ogura Y, Nakao Y, Toyoda T, Masaki Y, Ueda M, Tanida J (2009a) A compact shape-measurement module based on a thin compound-eye camera with multiwavelength diffractive pattern projection for intraoral diagnosis. In: Proceedings of the SPIE, vol 7442, p 74420U

  • Kagawa K, Tanabe H, Ogata C, Ogura Y, Nakao Y, Toyoda T, Masaki Y, Ueda M, Tanida J (2009b) An active intraoral shape measurement scheme using a compact compound-eye camera with integrated pattern projectors. Jpn J Appl Phys 48(9S2):09LB04

  • Kagawa K, Fukata N, Tanida J (2010) High-speed multispectral three-dimensional imaging with a compound-eye camera tombo. In: Proceedings of the SPIE, vol 7797, p 77970N

  • Kagawa K, Yamada K, Tanaka E, Tanida J (2012a) A three-dimensional multifunctional compound-eye endoscopic system with extended depth of field. Electron Commun Jpn 95(11):14–27

    Article  Google Scholar 

  • Kagawa K, Shogenji R, Tanaka E, Yamada K, Kawahito S, Tanida J (2012b) Variable field-of-view visible and near-infrared polarization compound-eye endoscope. In: Annual international conference of the IEEE engineering in medicine and biology society, pp 3720–3723

  • Kagawa K, Tanaka E, Yamada K, Kawahito S, Tanida J (2012c) Deep-focus compound-eye camera with polarization filters for 3D endoscopes. In: Proceedings of the SPIE, vol 8227, p 822714

  • Kanaev AV, Ackerman JR, Fleet EF, Scribner DA (2007) TOMBO sensor with scene-independent superresolution processing. Opt Lett 32(19):2855–2857

    Article  Google Scholar 

  • Kawada H, Tatsuta H, Arikawa K, Takagi M (2006) Comparative study on the relationship between photoperiodic host-seeking behavioral patterns and the eye parameters of mosquitoes. J Insect Physiol 52(1):67–75

    Article  Google Scholar 

  • Kawano H, Okamoto T, Matsuzawa T, Nakajima H, Makita J, Toyoda Y, Funakura T, Nakanishi T, Kunieda T, Minobe T (2013) Compact and large depth of field image scanner for auto document feeder with compound eye system. Opt Rev 20(2):254–258

    Article  Google Scholar 

  • Kinoshita H, Hoshino K, Matsumoto K, Shimoyama I (2005) Thin compound eye camera with a zooming function by reflective optics. In: Proceedings of the IEEE conference on micro electro mechanical systems, pp 235–238

  • Kitamura Y, Shogenji R, Yamada K, Miyatake S, Miyamoto M, Morimoto T, Masaki Y, Kondou N, Miyazaki D, Tanida J et al (2004) Reconstruction of a high-resolution image on a compound-eye image-capturing system. Appl Opt 43(8):1719–1727

    Article  Google Scholar 

  • Krishnasamy R, Thomas P, Pepic S, Wong W, Hornsey RI (2004a) Calibration techniques for object tracking using a compound eye image sensor. In: Proceedings of the SPIE, vol 5611, pp 42–52

  • Krishnasamy R, Wong W, Shen E, Pepic S, Hornsey R, Thomas PJ (2004b) High precision target tracking with a compound-eye image sensor. In: Canadian conference on electrical and computer engineering, vol 4, pp 2319–2323

  • Lai XC, Meng LJ (2013) Artificial compound-eye gamma camera for mri compatible spect imaging. In: Proceedings of the IEEE nuclear science symposium and medical imaging conference, pp 1–7

  • Land MF (1976) Superposition images are formed by reflection in the eyes of some oceanic decapod Crustacea. Nature 263:764–765

    Article  Google Scholar 

  • Land MF (1981) Optics and vision in invertebrates. Handb Sens Physiol 7(6b):471–593

    Article  Google Scholar 

  • Land MF (1997) Visual acuity in insects. Annu Rev Entomol 42(1):147–177

    Article  Google Scholar 

  • Land MF, Nilsson DE (2012) Animal eyes. Oxford University Press, Oxford

    Book  Google Scholar 

  • Land MF, Gibson G, Horwood J, Zeil J (1999) Fundamental differences in the optical structure of the eyes of nocturnal and diurnal mosquitoes. J Comp Physiol A 185(1):91–103

    Article  Google Scholar 

  • Lee WB, Jang H, Park S, Song YM, Lee HN (2016) COMPU-EYE: a high resolution computational compound eye. Opt Express 24(3):2013–2026

    Article  Google Scholar 

  • Leitel R, Brückner A, Buß W, Viollet S, Pericet-Camara R, Mallot H, Bräuer A (2014) Curved artificial compound-eyes for autonomous navigation. In: Proceedings of the SPIE, vol 9130, p 91300H

  • Leitel R, Stollberg K, Brückner A, Duparré J, Dannberg P, Bräuer A (2010) A wafer-level camera approach based on the Gabor superlens. In: Proceedings of the SPIE, vol 7716, p 77160L

  • Li L, Yi AY (2009) Microfabrication on a curved surface using 3D microlens array projection. J Micromech Microeng 19(10):105,010

    Article  Google Scholar 

  • Li L, Yi AY (2010) Development of a 3D artificial compound eye. Opt Express 18(17):18125–18137

    Article  Google Scholar 

  • Li M, Xu L, Huang F, Tang M, Wang H (2007) Reconstruction of bionic compound eye images based on superresolution algorithm. In: Proceedings of the IEEE international conference on integration technology, pp 706–710

  • Li M, Xu L, Shi A, Huang F (2009) Image reconstruction algorithm inspired by a bionic compound eye system. CAAI Trans Intell Syst 4(2):180–187

    Google Scholar 

  • Li F, Chen S, Luo H, Gao Y (2013) Curved micro lens array for bionic compound eye. Opt Int J Light Electron Opt 124(12):1346–1349

    Article  Google Scholar 

  • Lin GL, Cheng CC (2007) Single-row superposition-type spherical compound-like eye for pan-tilt motion recovery. In: Proceedings of the IEEE symposium on computational intelligence in image and signal processing, pp 24–29

  • Lin GL, Cheng CC (2008) An artificial compound eye tracking pan-tilt motion. IAENG Int J Comput Sci 35(2):242–248

    Google Scholar 

  • Liu Z, Nehorai A, Paldi E (2009a) A biologically inspired compound-eye detector array—part I: modeling and fundamental limits. IEEE Trans Signal Process 57(5):1839–1857

    Article  MathSciNet  Google Scholar 

  • Liu Z, Nehorai A, Paldi E (2009b) A biologically inspired compound-eye detector array—part II: statistical performance analysis. IEEE Trans Signal Process 57(5):1858–1876

    Article  MathSciNet  Google Scholar 

  • Liu Y, Shi L, Shi R, Dong X, Deng Q, Du C (2012) An artificial compound eye system for large field imaging. In: Proceedings of the SPIE, vol 8558, p 85581L

  • Mendelowitz S, Klapp I, Mendlovic D (2013) Design of an image restoration algorithm for the TOMBO imaging system. J Opt Soc Am A 30(6):1193–1204

    Article  Google Scholar 

  • Meyer J, Brückner A, Leitel R, Dannberg P, Bräuer A, Tünnermann A (2011) Optical cluster eye fabricated on wafer-level. Opt Express 19(18):17506–17519

    Article  Google Scholar 

  • Miyazaki D, Ito K, Nakao Y, Toyoda T, Masaki Y (2008) Retrieval of three-dimensional image from compound-eye imaging with defocus using ray tracing. In: Proceedings of the IEEE international conference on innovative computing information and control, pp 51–51

  • Moens E, Meuret Y, Ottevaere H, Sarkar M, Bello DSS, Merken P, Thienpont H (2010) An insect eye-based image sensor with very large field of view. In: Proceedings of the SPIE, vol 7716, p 77162D

  • Nakamura T, Horisaki R, Tanida J (2012) Computational superposition compound eye imaging for extended depth-of-field and field-of-view. Opt Express 20(25):27482–27495

    Article  Google Scholar 

  • Neumann J, Fermüller C, Aloimonos Y (2003) Polydioptric camera design and 3D motion estimation. In: Proceedings of the CVPR IEEE, vol 2, pp II–294

  • Neumann J, Fermüller C, Aloimonos Y, Brajovic V (2004) Compound eye sensor for 3D ego motion estimation. In: Proceedings of the IEEE international conf on intelligent robots and systems, vol 4, pp 3712–3717

  • Nilsson DE (1989a) Optics and evolution of the compound eye. In: Gerben Stavenga D, Clayton Hardie R (eds) Facets of vision. Springer, Berlin, pp 30–73

  • Nilsson DE (1989b) Vision optics and evolution. Bioscience 39(5):298–307

    Article  Google Scholar 

  • Nitta K, Shogenji R, Miyatake S, Tanida J (2006) Image reconstruction for thin observation module by bound optics by using the iterative backprojection method. Appl Opt 45(13):2893–2900

    Article  Google Scholar 

  • Oberdörster A, Brückner A, Wippermann FC, Bräuer A (2011) Correcting distortion and braiding of micro-images from multi-aperture imaging systems. In: Proceedings of the SPIE, vol 7875, p 78750B

  • Ogata S, Ishida J, Sasano T (1994) Optical sensor array in an artificial compound eye. Opt Eng 33(11):3649–3655

    Article  Google Scholar 

  • Pericet-Camara R, Bahi-Vila G, Lecoeur J, Floreano D (2014) Miniature artificial compound eyes for optic-flow-based robotic navigation. In: Proceedings of the workshop on information optics, pp 1–3

  • Radtke D, Duparré J, Zeitner UD, Tünnermann A (2007) Laser lithographic fabrication and characterization of a spherical artificial compound eye. Opt Express 15(6):3067–3077

    Article  Google Scholar 

  • Sanders JS, Halford CE (1995) Design and analysis of apposition compound eye optical sensors. Opt Eng 34(1):222–235

    Article  Google Scholar 

  • Sarkar M (2011) A biologically inspired CMOS image sensor. Delft University of Technology, Delft

    Google Scholar 

  • Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int J Comput Vis 47(1–3):7–42

    Article  MATH  Google Scholar 

  • Schoenemann B (2007) Trilobite eyes and a new type of neural superposition eye in an ancient system. Palaeontogr Abt A 281(1–3):63–91

    Google Scholar 

  • Schoenemann B, Clarkson EN (2013) Discovery of some 400 million year-old sensory structures in the compound eyes of trilobites. Sci Rep 3. doi:10.1038/srep01429

  • Shen HK, Su GDJ (2013) Cluster eye camera using microlenses on parabolic surface. In: Proceedings of the SPIE, vol 8842, p 884202D

  • Sherk TE (1978) Development of the compound eyes of dragonflies (Odonata). III. Adult compound eyes. J Exp Zool 203(1):61–79

    Article  Google Scholar 

  • Shogenji R, Kitamura Y, Yamada K, Miyatake S, Tanida J (2004) Bimodal fingerprint capturing system based on compound-eye imaging module. Appl Opt 43(6):1355–1359

    Article  Google Scholar 

  • Sieler M, Schreiber P, Dannberg P, Bräuer A (2010) Array projection optics: multi-channel design for ultra slim projectors. In: Proceedings of the SPIE, vol 7716, p 77161A

  • Sieler M, Schreiber P, Dannberg P, Bräuer A, Tünnermann A (2012) Ultraslim fixed pattern projectors with inherent homogenization of illumination. Appl Opt 51(1):64–74

    Article  Google Scholar 

  • Sieler M, Fischer S, Schreiber P, Dannberg P, Bräuer A (2013) Microoptical array projectors for free-form screen applications. Opt Express 21(23):28702–28709

    Article  Google Scholar 

  • Snyder AW (1977) Acuity of compound eyes: physical limitations and design. J Comp Physiol 116(2):161–182

    Article  Google Scholar 

  • Snyder AW (1979) Physics of vision in compound eyes. In: Autrum H (ed) Comparative physiology and evolution of vision in invertebrates. Springer, Berlin, pp 225–313

  • Snyder AW, Stavenga DG, Laughlin SB (1977) Spatial information capacity of compound eyes. J Comp Physiol 116(2):183–207

    Article  Google Scholar 

  • Song YM, Xie Y, Malyarchuk V, Xiao J, Jung I, Choi KJ, Liu Z, Park H, Lu C, Kim RH et al (2013) Digital cameras with designs inspired by the arthropod eye. Nature 497(7447):95–99

    Article  Google Scholar 

  • Stollberg K, Brückner A, Duparré J, Dannberg P, Bräuer A, Tünnermann A (2009) The gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects. Opt Express 17(18):15747–15759

    Article  Google Scholar 

  • Tanida J, Kumagai T, Yamada K, Miyatake S, Ishida K, Morimoto T, Kondou N, Miyazaki D, Ichioka Y (2000) Thin observation module by bound optics (TOMBO): an optoelectronic image capturing system. In: Proceedings of the SPIE, vol 4089, pp 1030–1036

  • Tanida J, Kumagai T, Yamada K, Miyatake S, Ishida K, Morimoto T, Kondou N, Miyazaki D, Ichioka Y (2001a) Thin observation module by bound optics (TOMBO): concept and experimental verification. Appl Opt 40(11):1806–1813

    Article  Google Scholar 

  • Tanida J, Kitamura Y, Yamada K, Miyatake S, Miyamoto M, Morimoto T, Masaki Y, Kondou N, Miyazaki D, Ichioka Y (2001b) Compact image capturing system based on compound imaging and digital reconstruction. In: Proceedings of the SPIE, vol 4455, pp 34–41

  • Tanida J, Shogenji R, Kitamura Y, Yamada K, Miyamoto M, Miyatake S (2003) Color imaging with an integrated compound imaging system. Opt Express 11(18):2109–2117

    Article  Google Scholar 

  • Tao MW, Hadap S, Malik J, Ramamoorthi R (2013) Depth from combining defocus and correspondence using light-field cameras. In: Proceedings of the IEEE inernational conference on computer vision, pp 673–680

  • Tudela R, Brückner A, Duparré J, Bräuer A (2008a) Image capture and processing for a microoptical compound-eye sensor. In: Proceedings of the SPIE, vol 7000, p 700019

  • Tudela R, Brückner A, Duparré J, Bräuer A (2008b) An image restoration approach for artificial compound eyes. In: Proceedings of the SPIE, vol 6812, p 68120O

  • Ueno R, Suzuki K, Kobayashi M, Kwon H, Honda H, Funaki H (2013) Compound-eye camera module as small as 8.5 8.5 6.0 mm for 26 k-resolution depth map and 2-Mpix 2D imaging. IEEE Photonics J 5(4):6801,212

    Article  Google Scholar 

  • Vannier J, Schoenemann B, Gillot T, Charbonnier S, Clarkson E (2016) Exceptional preservation of eye structure in arthropod visual predators from the middle jurassic. Nat Commun 7. doi:10.1038/ncomms10320

  • Viollet S, Godiot S, Leitel R, Buss W, Breugnon P, Menouni M, Juston R, Expert F, Colonnier F, L’Eplattenier G et al (2014) Hardware architecture and cutting-edge assembly process of a tiny curved compound eye. Sensors 14(11):21702–21721

    Article  Google Scholar 

  • Wanner S, Goldluecke B (2014) Variational light field analysis for disparity estimation and super-resolution. IEEE Trans Pattern Anal 36(3):606–619

    Article  Google Scholar 

  • Wippermann F, Duparré J, Schreiber P, Dannberg P (2005) Design and fabrication of a chirped array of refractive ellipsoidal micro-lenses for an apposition eye camera objective. In: Proceedings of the SPIE, vol 5962, p 59622C

  • Wippermann F, Duparré J, Schreiber P (2006) Applications of chirped microlens arrays for aberration compensation and improved system integration. In: Proceedings of the SPIE, vol 6289, p 628915

  • Wood SL, Rajan D, Christensen M, Douglas S, Smithson B (2004) Resolution improvement for compound eye images through lens diversity. In: Proceedings of the digital signal processing workshop and IEEE signal processing education workshop, pp 151–155

  • Wood SL, Smithson BJ, Rajan D, Christensen MP (2005) Performance of a MVE algorithm for compound eye image reconstruction using lens diversity. In: International conference on acoustics, speech, and signal processing, vol 2, pp 593–596

  • Wood SL, Lan H, Rajan D, Christensen MP (2006) Improved multiplexed image reconstruction performance through optical system diversity design. In: Proceedings of the IEEE image processing, pp 2717–2720

  • Wright O, Weissman A, Kelly FC (1953) How we invented the airplane. McKay, Philadelphia

    Google Scholar 

  • Xiao J, Song YM, Xie Y, Malyarchuk V, Jung I, Choi KJ, Liu Z, Park H, Lu C, Kim RH et al (2014a) Arthropod eye-inspired digital camera with unique imaging characteristics. In: Proceedings of the SPIE, vol 9083, p 90831L

  • Xiao J, Song YM, Xie Y, Malyarchuk V, Jung I, Choi KJ, Liu Z, Park H, Lu C, Kim RH et al (2014b) Bio-inspired hemispherical compound eye camera. In: Proceedings of the SPIE, vol 8958, p 89580A

  • Yamada K, Asano T, Tanida J, Shougenji R, Nagakura T (2005) Development of three dimensional endoscope by compound optics. In: Proceedings of the SPIE, vol 5864, p 586405

  • Yamada K, Mitsui H, Asano T, Tanida J, Takahashi H (2006) Development of ultrathin three-dimensional image capturing system. In: Proceedings of the SPIE, vol 6056, p 60560V

  • Yang F, Chang H, Dong L, Wang A, Ming H (2009) Study on far-field image using microlens array integrated with LCD. In: Proceedings of the SPIE, vol 7509, p 750904

  • Zhang H, Lu Z, Wang R, Li F, Liu H, Sun Q (2006) Study on curved compound eye imaging system. Opt Precis Eng 14(3):346–350

    Google Scholar 

  • Zhang Y, Du J, Shi L, Dong X, Wei X, Du C (2010) Artificial compound-eye imaging system with a large field of view based on a convex solid substrate. In: Proceedings of the SPIE, vol 7848, p 78480U

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (61373047, 61672437), the projects supported by the State Key Laboratory of Robotics No. 2014-O09, by Scientific Research Foundation of CUIT under Grant No. J201508, by Scientific Research Fund of Sichuan Provincial Science & Technology Department under Grant No. 2015GZ0304, and by Fund of Robot Technology Used for Special Environment Key Laboratory of Sichuan Province No. 14zxtk04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gexiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Jiang, T., Zhang, G. et al. Artificial compound eye: a survey of the state-of-the-art. Artif Intell Rev 48, 573–603 (2017). https://doi.org/10.1007/s10462-016-9513-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-016-9513-7

Keywords

Navigation