Skip to main content
Log in

Interleukin-8 release by endothelial colony-forming cells isolated from idiopathic pulmonary fibrosis patients might contribute to their pathogenicity

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Introduction

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by obliteration of alveolar architecture, resulting in declining lung function and ultimately death. Pathogenic mechanisms involve a concomitant accumulation of scar tissue together with myofibroblasts activation and a strong abnormal vascular remodeling. Endothelial progenitor cells (ECFC subtype) have been investigated in several human lung diseases as a potential actor in IPF. We previously demonstrated that ECFCs are down-regulated in IPF in contrast to healthy controls. We postulated here that ECFCs might behave as a liquid biopsy in IPF patients and that they exert modified vasculogenic properties.

Methods and results

ECFCs isolated from controls and IPF patients expressed markers of the endothelial lineage and did not differ concerning adhesion, migration, and differentiation in vitro and in vivo. However, senescent and apoptotic states were increased in ECFCs from IPF patients as shown by galactosidase staining, p16 expression, and annexin-V staining. Furthermore, conditioned medium of IPF-ECFCs had increased level of interleukin-8 that induced migration of neutrophils in vitro and in vivo. In addition, an infiltration by neutrophils was shown in IPF lung biopsies and we found in a prospective clinical study that a high level of neutrophils in peripheral blood of IPF patients was associated to a poor prognosis.

Conclusion

To conclude, our study shows that IPF patients have a senescent ECFC phenotype associated with an increased IL-8 secretion potential that might contribute to lung neutrophils invasion during IPF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lederer DJ, Martinez FJ (2018) Idiopathic pulmonary fibrosis. N Engl J Med 378:1811–1823. https://doi.org/10.1056/NEJMra1705751

    Article  CAS  PubMed  Google Scholar 

  2. Wolters PJ, Blackwell TS, Eickelberg O et al (2018) Time for a change: is idiopathic pulmonary fibrosis still idiopathic and only fibrotic? Lancet Respir Med 6:154–160. https://doi.org/10.1016/S2213-2600(18)30007-9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hashimoto N, Phan SH, Imaizumi K et al (2010) Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 43:161–172. https://doi.org/10.1165/rcmb.2009-0031OC

    Article  CAS  PubMed  Google Scholar 

  4. Kato S, Inui N, Hakamata A et al (2018) Changes in pulmonary endothelial cell properties during bleomycin-induced pulmonary fibrosis. Respir Res 19:127. https://doi.org/10.1186/s12931-018-0831-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ebina M, Shimizukawa M, Shibata N et al (2004) Heterogeneous increase in CD34-positive alveolar capillaries in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 169:1203–1208. https://doi.org/10.1164/rccm.200308-1111OC

    Article  PubMed  Google Scholar 

  6. Smadja DM, Mauge L, Nunes H et al (2013) Imbalance of circulating endothelial cells and progenitors in idiopathic pulmonary fibrosis. Angiogenesis 16:147–157. https://doi.org/10.1007/s10456-012-9306-9

    Article  CAS  PubMed  Google Scholar 

  7. Strieter RM, Gomperts BN, Keane MP (2007) The role of CXC chemokines in pulmonary fibrosis. J Clin Invest 117:549–556. https://doi.org/10.1172/JCI30562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smadja DM, Nunes H, Juvin K et al (2014) Increase in both angiogenic and angiostatic mediators in patients with idiopathic pulmonary fibrosis. Pathol Biol 62:391–394. https://doi.org/10.1016/j.patbio.2014.07.006

    Article  CAS  PubMed  Google Scholar 

  9. Silvestre J-S, Smadja DM, Lévy BI (2013) Postischemic revascularization: from cellular and molecular mechanisms to clinical applications. Physiol Rev 93:1743–1802. https://doi.org/10.1152/physrev.00006.2013

    Article  CAS  PubMed  Google Scholar 

  10. d’Audigier C, Susen S, Blandinieres A et al (2018) Egfl7 represses the vasculogenic potential of human endothelial progenitor cells. Stem Cell Rev Rep 14:82–91. https://doi.org/10.1007/s12015-017-9775-8

    Article  CAS  PubMed  Google Scholar 

  11. Basile DP, Yoder MC (2014) Circulating and tissue resident endothelial progenitor cells. J Cell Physiol 229:10–16. https://doi.org/10.1002/jcp.24423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Toshner M, Voswinckel R, Southwood M et al (2009) Evidence of dysfunction of endothelial progenitors in pulmonary arterial hypertension. Am J Respir Crit Care Med 180:780–787. https://doi.org/10.1164/rccm.200810-1662OC

    Article  PubMed  PubMed Central  Google Scholar 

  13. Baker CD, Balasubramaniam V, Mourani PM et al (2012) Cord blood angiogenic progenitor cells are decreased in bronchopulmonary dysplasia. Eur Respir J 40:1516–1522. https://doi.org/10.1183/09031936.00017312

    Article  PubMed  PubMed Central  Google Scholar 

  14. Paschalaki KE, Starke RD, Hu Y et al (2013) Dysfunction of endothelial progenitor cells from smokers and chronic obstructive pulmonary disease patients due to increased DNA damage and senescence. Stem Cells Dayt Ohio 31:2813–2826. https://doi.org/10.1002/stem.1488

    Article  CAS  Google Scholar 

  15. Fadini GP, Schiavon M, Rea F et al (2007) Depletion of endothelial progenitor cells may link pulmonary fibrosis and pulmonary hypertension. Am J Respir Crit Care Med 176:724–725. https://doi.org/10.1164/ajrccm.176.7.724a author reply 725.

    Article  PubMed  Google Scholar 

  16. Díez M, Musri MM, Ferrer E et al (2010) Endothelial progenitor cells undergo an endothelial-to-mesenchymal transition-like process mediated by TGFbetaRI. Cardiovasc Res 88:502–511. https://doi.org/10.1093/cvr/cvq236

    Article  CAS  PubMed  Google Scholar 

  17. Raghu G, Collard HR, Egan JJ et al (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183:788–824. https://doi.org/10.1164/rccm.2009-040GL

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mauge L, Sabatier F, Boutouyrie P et al (2014) Forearm ischemia decreases endothelial colony-forming cell angiogenic potential. Cytotherapy 16:213–224. https://doi.org/10.1016/j.jcyt.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  19. Bacha NC, Blandinieres A, Rossi E et al (2018) Endothelial Microparticles are Associated to Pathogenesis of Idiopathic Pulmonary Fibrosis. Stem Cell Rev 14:223–235. https://doi.org/10.1007/s12015-017-9778-5

    Article  CAS  Google Scholar 

  20. Arnulf B, Lecourt S, Soulier J et al (2007) Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma. Leukemia 21:158–163. https://doi.org/10.1038/sj.leu.2404466

    Article  CAS  PubMed  Google Scholar 

  21. Smadja DM, Bièche I, Helley D et al (2007) Increased VEGFR2 expression during human late endothelial progenitor cells expansion enhances in vitro angiogenesis with up-regulation of integrin alpha(6). J Cell Mol Med 11:1149–1161. https://doi.org/10.1111/j.1582-4934.2007.00090.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakatsu MN, Sainson RCA, Aoto JN et al (2003) Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1. Microvasc Res 66:102–112

    Article  CAS  PubMed  Google Scholar 

  23. Eglinger J, Karsjens H, Lammert E (2017) Quantitative assessment of angiogenesis and pericyte coverage in human cell-derived vascular sprouts. Inflamm Regen 37:2. https://doi.org/10.1186/s41232-016-0033-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smadja D, Gaussem P, Roncal C et al (2010) Arterial and venous thrombosis is associated with different angiogenic cytokine patterns in patients with antiphospholipid syndrome. Lupus 19:837–843. https://doi.org/10.1177/0961203309360985

    Article  CAS  PubMed  Google Scholar 

  25. Ferratge S, Ha G, Carpentier G et al (2017) Initial clonogenic potential of human endothelial progenitor cells is predictive of their further properties and establishes a functional hierarchy related to immaturity. Stem Cell Res 21:148–159. https://doi.org/10.1016/j.scr.2017.04.009

    Article  CAS  PubMed  Google Scholar 

  26. Coppé J-P, Desprez P-Y, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118. https://doi.org/10.1146/annurev-pathol-121808-102144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Melero-Martin JM, De Obaldia ME, Allen P et al (2010) Host myeloid cells are necessary for creating bioengineered human vascular networks in vivo. Tissue Eng Part A 16:2457–2466. https://doi.org/10.1089/ten.TEA.2010.0024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin R-Z, Lee CN, Moreno-Luna R et al (2017) Host non-inflammatory neutrophils mediate the engraftment of bioengineered vascular networks. Nat Biomed Eng 1: 0081. https://doi.org/10.1038/s41551-017-0081

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yin Q, Nan H-Y, Zhang W-H et al (2011) Pulmonary microvascular endothelial cells from bleomycin-induced rats promote the transformation and collagen synthesis of fibroblasts. J Cell Physiol 226:2091–2102. https://doi.org/10.1002/jcp.22545

    Article  CAS  PubMed  Google Scholar 

  30. Pantel K, Alix-Panabières C (2016) Functional studies on viable circulating tumor cells. Clin Chem 62:328–334. https://doi.org/10.1373/clinchem.2015.242537

    Article  CAS  PubMed  Google Scholar 

  31. Vassallo PF, Simoncini S, Ligi I et al (2014) Accelerated senescence of cord blood endothelial progenitor cells in premature neonates is driven by SIRT1 decreased expression. Blood 123:2116–2126. https://doi.org/10.1182/blood-2013-02-484956

    Article  CAS  PubMed  Google Scholar 

  32. Selman M, Pardo A (2014) Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis. An integral model. Am J Respir Crit Care Med 189:1161–1172. https://doi.org/10.1164/rccm.201312-2221PP

    Article  CAS  PubMed  Google Scholar 

  33. Medina RJ, O’Neill CL, O’Doherty TM et al (2013) Ex vivo expansion of human outgrowth endothelial cells leads to IL-8-mediated replicative senescence and impaired Vasoreparative function: IL8 mediates OEC senescence. STEM CELLS 31:1657–1668. https://doi.org/10.1002/stem.1414

    Article  CAS  PubMed  Google Scholar 

  34. Ingram DA (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760. https://doi.org/10.1182/blood-2004-04-1396

    Article  CAS  PubMed  Google Scholar 

  35. Kimura T, Kohno H, Matsuoka Y et al (2011) CXCL8 enhances the angiogenic activity of umbilical cord blood-derived outgrowth endothelial cells in vitro. Cell Biol Int 35:201–208. https://doi.org/10.1042/CBI20090225

    Article  CAS  PubMed  Google Scholar 

  36. Smadja DM, Bièche I, Susen S et al (2009) Interleukin 8 is differently expressed and modulated by PAR-1 activation in early and late endothelial progenitor cells. J Cell Mol Med 13:2534–2546. https://doi.org/10.1111/j.1582-4934.2008.00429.x

    Article  PubMed  Google Scholar 

  37. Carré PC, Mortenson RL, King TE et al (1991) Increased expression of the interleukin-8 gene by alveolar macrophages in idiopathic pulmonary fibrosis. A potential mechanism for the recruitment and activation of neutrophils in lung fibrosis. J Clin Invest 88:1802–1810. https://doi.org/10.1172/JCI115501

    Article  PubMed  PubMed Central  Google Scholar 

  38. Keane MP, Belperio JA, Moore TA et al (1999) Neutralization of the CXC chemokine, macrophage inflammatory protein-2, attenuates bleomycin-induced pulmonary fibrosis. J Immunol 1950 162:5511–5518

    CAS  PubMed  Google Scholar 

  39. Richter AG, Perkins GD, Chavda A et al (2011) Neutrophil chemotaxis in granulomatosis with polyangiitis (Wegener’s) and idiopathic pulmonary fibrosis. Eur Respir J 38:1081–1088. https://doi.org/10.1183/09031936.00161910

    Article  CAS  PubMed  Google Scholar 

  40. Richards TJ, Kaminski N, Baribaud F et al (2012) Peripheral blood proteins predict mortality in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 185:67–76. https://doi.org/10.1164/rccm.201101-0058OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fujimori Y, Kataoka M, Tada S et al (2003) The role of Interleukin-8 in interstitial pneumonia. Respirology 8:33–40

    Article  PubMed  Google Scholar 

  42. Ahn M-H, Park B-L, Lee S-H et al (2011) A promoter SNP rs4073T> A in the common allele of the interleukin 8 gene is associated with the development of idiopathic pulmonary fibrosis via the IL-8 protein enhancing mode. Respir Res 12:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Raghu G, Rochwerg B, Zhang Y et al (2015) An official ATS/ERS/JRS/alat clinical practice guideline: treatment of idiopathic pulmonary fibrosis. An update of the 2011 clinical practice guideline. Am J Respir Crit Care Med 192:e3–e19. https://doi.org/10.1164/rccm.201506-1063ST

    Article  PubMed  Google Scholar 

  44. Desai O, Winkler J, Minasyan M, Herzog EL (2018) The role of immune and inflammatory cells in idiopathic pulmonary fibrosis. Front Med 5:. https://doi.org/10.3389/fmed.2018.00043

  45. Chua F, Dunsmore SE, Clingen PH et al (2007) Mice lacking neutrophil elastase are resistant to bleomycin-induced pulmonary fibrosis. Am J Pathol 170:65–74. https://doi.org/10.2353/ajpath.2007.060352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Takemasa A, Ishii Y, Fukuda T (2012) A neutrophil elastase inhibitor prevents bleomycin-induced pulmonary fibrosis in mice. Eur Respir J 40:1475–1482. https://doi.org/10.1183/09031936.00127011

    Article  CAS  PubMed  Google Scholar 

  47. Gregory AD, Kliment CR, Metz HE et al (2015) Neutrophil elastase promotes myofibroblast differentiation in lung fibrosis. J Leukoc Biol 98:143–152. https://doi.org/10.1189/jlb.3HI1014-493R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Henry MT, McMahon K, Mackarel AJ et al (2002) Matrix metalloproteinases and tissue inhibitor of metalloproteinase-1 in sarcoidosis and IPF. Eur Respir J 20:1220–1227

    Article  CAS  PubMed  Google Scholar 

  49. Corbel M, Caulet-Maugendre S, Germain N et al (2001) Inhibition of bleomycin-induced pulmonary fibrosis in mice by the matrix metalloproteinase inhibitor batimastat. J Pathol 193:538–545. https://doi.org/10.1002/path.826

    Article  CAS  PubMed  Google Scholar 

  50. Chrysanthopoulou A, Mitroulis I, Apostolidou E et al (2014) Neutrophil extracellular traps promote differentiation and function of fibroblasts. J Pathol 233:294–307. https://doi.org/10.1002/path.4359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the animal Platform, CRP2 – UMS 3612 CNRS – US25 Inserm-IRD – Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France. We are indebted to cell therapy department of Saint-Louis Hospital (AP-HP, Paris) for cord-blood samples. This work was supported by grants of the Chancellerie des Universités (Legs Poix), PRES, and PROMEX STIFTUNG FUR DIE FORSCHUNG foundation. A. Blandinières was supported by grants from AP-HP and INSERM (contrat d’accueil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Smadja.

Ethics declarations

Conflict of interest

The authors do not have any conflicts of interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 34417 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blandinières, A., Gendron, N., Bacha, N. et al. Interleukin-8 release by endothelial colony-forming cells isolated from idiopathic pulmonary fibrosis patients might contribute to their pathogenicity. Angiogenesis 22, 325–339 (2019). https://doi.org/10.1007/s10456-018-09659-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-018-09659-5

Keywords

Navigation