Skip to main content
Log in

HIF inhibitors for ischemic retinopathies and cancers: options beyond anti-VEGF therapies

  • Review Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Aberrant activation of the hypoxia inducible factor (HIF) pathway causing overexpression of angiogenic genes, like vascular endothelial growth factor (VEGF), is one of the underlying causes of ocular neovascularization (NV) and metastatic cancer. Consistently, along with surgical interventions, a number of anti-VEGF agents have been approved by FDA for the treatment of ocular neovascular diseases. These anti-VEGF agents, like ranibizumab/lucentis, have revolutionized the treatment in the past decade. However, substantial vision improvement is observed only in a subset of age-related macular degeneration patients receiving ranibizumab. Further, all current therapies are associated with limitations and side effects. For example, surgeries cause tissue destruction and inflammation while anti-VEGF therapies are expensive, require repeated administration, and offer temporary relief from vascular leakage. These factors impose significant cost and treatment burdens to both the patient and society. With an aging population in most western countries with a continually increasing number of patients on lifelong treatment for these retinal diseases, the focus of ocular drug development for neovascular diseases will be to improve efficacy while reducing treatment costs. Blocking the HIF pathway, a major regulator of ocular NV and cancer, offers an appealing therapeutic strategy. Therefore, this review summarizes HIF inhibitors that have been recently evaluated for the treatment of different cancers and ischemic retinopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186. doi:10.1056/NEJM197111182852108

    Article  CAS  PubMed  Google Scholar 

  2. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246(4935):1306–1309

    Article  CAS  PubMed  Google Scholar 

  3. Shih T, Lindley C (2006) Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther 28(11):1779–1802. doi:10.1016/j.clinthera.2006.11.015

    Article  CAS  PubMed  Google Scholar 

  4. Samant RS, Shevde LA (2011) Recent advances in anti-angiogenic therapy of cancer. Oncotarget 2(3):122–134. doi:10.18632/oncotarget.234

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tolentino MJ, Miller JW, Gragoudas ES, Chatzistefanou K, Ferrara N, Adamis AP (1996) Vascular endothelial growth factor is sufficient to produce iris neovascularization and neovascular glaucoma in a nonhuman primate. Arch Ophthalmol 114(8):964–970

    Article  CAS  PubMed  Google Scholar 

  6. Miller JW, Adamis AP, Shima DT, D’Amore PA, Moulton RS, O’Reilly MS, Folkman J, Dvorak HF, Brown LF, Berse B et al (1994) Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol 145(3):574–584

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Stewart MW (2012) The expanding role of vascular endothelial growth factor inhibitors in ophthalmology. Mayo Clin Proc 87(1):77–88. doi:10.1016/j.mayocp.2011.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gragoudas ES, Adamis AP, Cunningham ET, Jr., Feinsod M, Guyer DR, Group VISiONCT (2004) Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 351(27):2805–2816. doi:10.1056/NEJMoa042760

    Article  Google Scholar 

  9. Costa RA, Jorge R, Calucci D, Cardillo JA, Melo LA Jr, Scott IU (2006) Intravitreal bevacizumab for choroidal neovascularization caused by AMD (IBeNA Study): results of a phase 1 dose-escalation study. Invest Ophthalmol Vis Sci 47(10):4569–4578. doi:10.1167/iovs.06-0433

    Article  PubMed  Google Scholar 

  10. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355(14):1419–1431. doi:10.1056/NEJMoa054481

    Article  CAS  PubMed  Google Scholar 

  11. Nguyen QD, Campochiaro PA, Shah SM, Browning DJ, Hudson HL, Sonkin PL, Hariprasad SM, Kaiser PK, Slakter J, Haller JA, Do DV, Mieler W, Chu K, Ingerman A, Vitti R, Berliner AJ, Cedarbaum J, Clear-It I (2012) Evaluation of very high- and very low-dose intravitreal aflibercept in patients with neovascular age-related macular degeneration. J Ocul Pharmacol Ther 28(6):581–588. doi:10.1089/jop.2011.0261

    CAS  PubMed  Google Scholar 

  12. Kim KJ, Li B, Houck K, Winer J, Ferrara N (1992) The vascular endothelial growth factor proteins: identification of biologically relevant regions by neutralizing monoclonal antibodies. Growth Factors 7(1):53–64. doi:10.3109/08977199209023937

    Article  CAS  PubMed  Google Scholar 

  13. Rosenfeld PJ, Moshfeghi AA, Puliafito CA (2005) Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging 36(4):331–335

    PubMed  Google Scholar 

  14. Aiello LP, Pierce EA, Foley ED, Takagi H, Chen H, Riddle L, Ferrara N, King GL, Smith LE (1995) Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci USA 92(23):10457–10461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ozaki H, Seo MS, Ozaki K, Yamada H, Yamada E, Okamoto N, Hofmann F, Wood JM, Campochiaro PA (2000) Blockade of vascular endothelial cell growth factor receptor signaling is sufficient to completely prevent retinal neovascularization. Am J Pathol 156(2):697–707. doi:10.1016/S0002-9440(10)64773-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY, Sy JP, Schneider S (2006) Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 355(14):1432–1444. doi:10.1056/NEJMoa062655

    Article  CAS  PubMed  Google Scholar 

  17. Kovach JL, Schwartz SG, Flynn HW Jr, Scott IU (2012) Anti-VEGF treatment strategies for wet AMD. J Ophthalmol 2012:786870. doi:10.1155/2012/786870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kim EK, Kong SJ, Chung SK (2014) Comparative study of ranibizumab and bevacizumab on corneal neovascularization in rabbits. Cornea 33(1):60–64. doi:10.1097/ICO.0000000000000007

    Article  PubMed  Google Scholar 

  19. Ivacik IS, Goktas S, Sakarya Y, Ozcimen M, Sakarya R (2013) Inhibition of corneal neovascularization by subconjunctival and topical bevacizumab and sunitinib in a rabbit model. Cornea 32(12):e193. doi:10.1097/ICO.0b013e3182a9e734

    Article  PubMed  Google Scholar 

  20. Frenkel RE, Shapiro H, Stoilov I (2015) Predicting vision gains with anti-VEGF therapy in neovascular age-related macular degeneration patients by using low-luminance vision. Br J Ophthalmol. doi:10.1136/bjophthalmol-2015-307575

    PubMed  Google Scholar 

  21. Ho AC, Busbee BG, Regillo CD, Wieland MR, Van, Everen SA, Li Z, Rubio RG, Lai P, Group HS (2014) Twenty-four-month efficacy and safety of 0.5 mg or 2.0 mg ranibizumab in patients with subfoveal neovascular age-related macular degeneration. Ophthalmology 121(11):2181–2192. doi:10.1016/j.ophtha.2014.05.009

    Article  Google Scholar 

  22. Busbee BG, Ho AC, Brown DM, Heier JS, Suner IJ, Li Z, Rubio RG, Lai P, Group HS (2013) Twelve-month efficacy and safety of 0.5 mg or 2.0 mg ranibizumab in patients with subfoveal neovascular age-related macular degeneration. Ophthalmology 120(5):1046–1056. doi:10.1016/j.ophtha.2012.10.014

    Article  Google Scholar 

  23. Fong AH, Lai TY (2013) Long-term effectiveness of ranibizumab for age-related macular degeneration and diabetic macular edema. Clin Interv Aging 8:467–483. doi:10.2147/CIA.S36811

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Dhoot DS, Kaiser PK (2012) Ranibizumab for age-related macular degeneration. Expert Opin Biol Ther 12(3):371–381. doi:10.1517/14712598.2012.660523

    Article  CAS  PubMed  Google Scholar 

  25. Rosenfeld PJ, Rich RM, Lalwani GA (2006) Ranibizumab: phase III clinical trial results. Ophthalmol Clin N Am 19(3):361–372. doi:10.1016/j.ohc.2006.05.009

    Google Scholar 

  26. Zaki AA, Farid SF (2010) Subconjunctival bevacizumab for corneal neovascularization. Acta Ophthalmol 88(8):868–871. doi:10.1111/j.1755-3768.2009.01585.x

    Article  CAS  PubMed  Google Scholar 

  27. Erdurmus M, Totan Y (2007) Subconjunctival bevacizumab for corneal neovascularization. Graefes Arch Clin Exp Ophthalmol 245(10):1577–1579. doi:10.1007/s00417-007-0587-4

    Article  CAS  PubMed  Google Scholar 

  28. Ventrice P, Leporini C, Aloe JF, Greco E, Leuzzi G, Marrazzo G, Scorcia GB, Bruzzichesi D, Nicola V, Scorcia V (2013) Anti-vascular endothelial growth factor drugs safety and efficacy in ophthalmic diseases. J Pharmacol Pharmacother 4(Suppl1):S38–S42. doi:10.4103/0976-500X.120947

    PubMed  PubMed Central  Google Scholar 

  29. Wong LJ, Desai RU, Jain A, Feliciano D, Moshfeghi DM, Sanislo SR, Blumenkranz MS (2008) Surveillance for potential adverse events associated with the use of intravitreal bevacizumab for retinal and choroidal vascular disease. Retina 28(8):1151–1158. doi:10.1097/IAE.0b013e31817e100f

    Article  PubMed  Google Scholar 

  30. Georgopoulos M, Polak K, Prager F, Prunte C, Schmidt-Erfurth U (2009) Characteristics of severe intraocular inflammation following intravitreal injection of bevacizumab (Avastin). Br J Ophthalmol 93(4):457–462. doi:10.1136/bjo.2008.138479

    Article  CAS  PubMed  Google Scholar 

  31. Falavarjani KG, Nguyen QD (2013) Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye (Lond) 27(7):787–794. doi:10.1038/eye.2013.107

    Article  CAS  Google Scholar 

  32. Hwang DJ, Kim YW, Woo SJ, Park KH (2012) Comparison of systemic adverse events associated with intravitreal anti-VEGF injection: ranibizumab versus bevacizumab. J Korean Med Sci 27(12):1580–1585. doi:10.3346/jkms.2012.27.12.1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Singer MA, Awh CC, Sadda S, Freeman WR, Antoszyk AN, Wong P, Tuomi L (2012) HORIZON: an open-label extension trial of ranibizumab for choroidal neovascularization secondary to age-related macular degeneration. Ophthalmology 119(6):1175–1183. doi:10.1016/j.ophtha.2011.12.016

    Article  PubMed  Google Scholar 

  34. Comparison of Age-related Macular Degeneration Treatments Trials Research Group, Martin DF, Maguire MG, Fine SL, Ying GS, Jaffe GJ, Grunwald JE, Toth C, Redford M, Ferris FL III (2012) Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. Ophthalmology 119(7):1388–1398. doi:10.1016/j.ophtha.2012.03.053

    Article  Google Scholar 

  35. Jain RK, Duda DG, Clark JW, Loeffler JS (2006) Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3(1):24–40. doi:10.1038/ncponc0403

    Article  CAS  PubMed  Google Scholar 

  36. Sledge GW (2015) Anti-vascular endothelial growth factor therapy in breast cancer: game over? J Clin Oncol 33(2):133–135. doi:10.1200/JCO.2014.58.1298

    Article  CAS  PubMed  Google Scholar 

  37. Chamberlain MC (2011) Bevacizumab for the treatment of recurrent glioblastoma. Clin Med Insights Oncol 5:117–129. doi:10.4137/CMO.S7232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, Cernea D, Brandes AA, Hilton M, Abrey L, Cloughesy T (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370(8):709–722. doi:10.1056/NEJMoa1308345

    Article  CAS  PubMed  Google Scholar 

  39. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, Colman H, Chakravarti A, Pugh S, Won M, Jeraj R, Brown PD, Jaeckle KA, Schiff D, Stieber VW, Brachman DG, Werner-Wasik M, Tremont-Lukats IW, Sulman EP, Aldape KD, Curran WJ Jr, Mehta MP (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370(8):699–708. doi:10.1056/NEJMoa1308573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466. doi:10.1016/S1470-2045(09)70025-7

    Article  CAS  PubMed  Google Scholar 

  41. Enge M, Bjarnegard M, Gerhardt H, Gustafsson E, Kalen M, Asker N, Hammes HP, Shani M, Fassler R, Betsholtz C (2002) Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J 21(16):4307–4316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mori K, Gehlbach P, Ando A, Dyer G, Lipinsky E, Chaudhry AG, Hackett SF, Campochiaro PA (2002) Retina-specific expression of PDGF-B versus PDGF-A: vascular versus nonvascular proliferative retinopathy. Invest Ophthalmol Vis Sci 43(6):2001–2006

    PubMed  Google Scholar 

  43. Sato N, Beitz JG, Kato J, Yamamoto M, Clark JW, Calabresi P, Raymond A, Frackelton AR Jr (1993) Platelet-derived growth factor indirectly stimulates angiogenesis in vitro. Am J Pathol 142(4):1119–1130

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dugel PU (2013) Anti-PDGF combination therapy in neovascular age-related macular degeneration: results of a phase 2b study Bryn Mawr Communications LLC. http://retinatoday.com/2013/03/. Accessed 22 July 2015

  45. Jo N, Mailhos C, Ju M, Cheung E, Bradley J, Nishijima K, Robinson GS, Adamis AP, Shima DT (2006) Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization. Am J Pathol 168(6):2036–2053. doi:10.2353/ajpath.2006.050588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. A Phase 3 Safety and Efficacy Study of Fovista® (E10030) Intravitreous Administration in Combination With Lucentis® Compared to Lucentis® Monotherapy (2013) U.S. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT01940900. Accessed 22 July 2015

  47. An 18 Month Phase 2a Open Label, Randomized Study of Avastin®, Lucentis®, or Eylea® (Anti-VEGF Therapy) Administered in Combination With Fovista® (Anti-PDGF BB Pegylated Aptamer) (2015) U.S. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT02387957?term=fovista&rank=1

  48. A Phase 3 Safety and Efficacy Study of Fovista® (E10030) Intravitreous Administration in Combination With Either Avastin® or Eylea® Compared to Avastin® or Eylea® Monotherapy (2013) U.S. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT01940887?term=fovista&rank=5. Accessed 10 Jan 2015

  49. A phase I, Safety, Tolerability and Pharmacokinetic Profile of Intravitreous Injections of E10030 (Anti-PDGF Pegylated Aptamer) in Subjects With Neovascular Age-Related Macular Degeneration (2007) U.S. National Institutes of Health. http://clinicaltrials.gov/ct2/show/NCT00569140?term=e10030&rank=1. Accessed 22 July 2015

  50. Husain D, Kim I, Gauthier D, Lane AM, Tsilimbaris MK, Ezra E, Connolly EJ, Michaud N, Gragoudas ES, O’Neill CA, Beyer JC, Miller JW (2005) Safety and efficacy of intravitreal injection of ranibizumab in combination with verteporfin PDT on experimental choroidal neovascularization in the monkey. Arch Ophthalmol 123(4):509–516. doi:10.1001/archopht.123.4.509

    Article  PubMed  Google Scholar 

  51. Kim IK, Husain D, Michaud N, Connolly E, Lane AM, Durrani K, Hafezi-Moghadam A, Gragoudas ES, O’Neill CA, Beyer JC, Miller JW (2006) Effect of intravitreal injection of ranibizumab in combination with verteporfin PDT on normal primate retina and choroid. Invest Ophthalmol Vis Sci 47(1):357–363. doi:10.1167/iovs.04-0087

    Article  PubMed  Google Scholar 

  52. Dhalla MS, Shah GK, Blinder KJ, Ryan EH Jr, Mittra RA, Tewari A (2006) Combined photodynamic therapy with verteporfin and intravitreal bevacizumab for choroidal neovascularization in age-related macular degeneration. Retina 26(9):988–993. doi:10.1097/01.iae.0000247164.70376.91

    Article  PubMed  Google Scholar 

  53. Heier JS, Boyer DS, Ciulla TA, Ferrone PJ, Jumper JM, Gentile RC, Kotlovker D, Chung CY, Kim RY, Group FS (2006) Ranibizumab combined with verteporfin photodynamic therapy in neovascular age-related macular degeneration: year 1 results of the FOCUS Study. Arch Ophthalmol 124(11):1532–1542. doi:10.1001/archopht.124.11.1532

    Article  CAS  PubMed  Google Scholar 

  54. Shen J, Samul R, Silva RL, Akiyama H, Liu H, Saishin Y, Hackett SF, Zinnen S, Kossen K, Fosnaugh K, Vargeese C, Gomez A, Bouhana K, Aitchison R, Pavco P, Campochiaro PA (2006) Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther 13(3):225–234. doi:10.1038/sj.gt.3302641

    Article  CAS  PubMed  Google Scholar 

  55. Kaiser PK, Symons RC, Shah SM, Quinlan EJ, Tabandeh H, Do DV, Reisen G, Lockridge JA, Short B, Guerciolini R, Nguyen QD, Sirna-027 Study I (2010) RNAi-based treatment for neovascular age-related macular degeneration by Sirna-027. Am J Ophthalmol 150(1):33–39. doi:10.1016/j.ajo.2010.02.006 (e32)

    Article  CAS  PubMed  Google Scholar 

  56. Guzman-Aranguez A, Loma P, Pintor J (2013) Small-interfering RNAs (siRNAs) as a promising tool for ocular therapy. Br J Pharmacol 170(4):730–747. doi:10.1111/bph.12330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. BenEzra D, Griffin BW, Maftzir G, Sharif NA, Clark AF (1997) Topical formulations of novel angiostatic steroids inhibit rabbit corneal neovascularization. Invest Ophthalmol Vis Sci 38(10):1954–1962

    CAS  PubMed  Google Scholar 

  58. Danis RP, Bingaman DP, Yang Y, Ladd B (1996) Inhibition of preretinal and optic nerve head neovascularization in pigs by intravitreal triamcinolone acetonide. Ophthalmology 103(12):2099–2104

    Article  CAS  PubMed  Google Scholar 

  59. Sennlaub F, Valamanesh F, Vazquez-Tello A, El-Asrar AM, Checchin D, Brault S, Gobeil F, Beauchamp MH, Mwaikambo B, Courtois Y, Geboes K, Varma DR, Lachapelle P, Ong H, Behar-Cohen F, Chemtob S (2003) Cyclooxygenase-2 in human and experimental ischemic proliferative retinopathy. Circulation 108(2):198–204. doi:10.1161/01.CIR.0000080735.93327.00

    Article  CAS  PubMed  Google Scholar 

  60. Sakamoto T, Soriano D, Nassaralla J, Murphy TL, Oganesian A, Spee C, Hinton DR, Ryan SJ (1995) Effect of intravitreal administration of indomethacin on experimental subretinal neovascularization in the subhuman primate. Arch Ophthalmol 113(2):222–226

    Article  CAS  PubMed  Google Scholar 

  61. Luna J, Tobe T, Mousa SA, Reilly TM, Campochiaro PA (1996) Antagonists of integrin alpha v beta 3 inhibit retinal neovascularization in a murine model. Lab Invest 75(4):563–573

    CAS  PubMed  Google Scholar 

  62. Hammes HP, Brownlee M, Jonczyk A, Sutter A, Preissner KT (1996) Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization. Nat Med 2(5):529–533

    Article  CAS  PubMed  Google Scholar 

  63. Zhang SX, Ma JX (2007) Ocular neovascularization: implication of endogenous angiogenic inhibitors and potential therapy. Prog Retin Eye Res 26(1):1–37. doi:10.1016/j.preteyeres.2006.09.002

    Article  PubMed  CAS  Google Scholar 

  64. Campochiaro PA (2013) Ocular neovascularization. J Mol Med 91(3):311–321. doi:10.1007/s00109-013-0993-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wangsa-Wirawan ND, Linsenmeier RA (2003) Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol 121(4):547–557. doi:10.1001/archopht.121.4.547

    Article  PubMed  Google Scholar 

  66. Folkman J, Ingber D (1992) Inhibition of angiogenesis. Semin Cancer Biol 3(2):89–96

    CAS  PubMed  Google Scholar 

  67. Cao W, Li F, Steinberg RH, Lavail MM (2001) Development of normal and injury-induced gene expression of aFGF, bFGF, CNTF, BDNF, GFAP and IGF-I in the rat retina. Exp Eye Res 72(5):591–604. doi:10.1006/exer.2001.0990

    Article  CAS  PubMed  Google Scholar 

  68. Gao G, Ma J (2002) Tipping the balance for angiogenic disorders. Drug Discov Today 7(3):171–172

    Article  PubMed  Google Scholar 

  69. Wang JJ, Zhang SX, Lu K, Chen Y, Mott R, Sato S, Ma JX (2005) Decreased expression of pigment epithelium-derived factor is involved in the pathogenesis of diabetic nephropathy. Diabetes 54(1):243–250

    Article  CAS  PubMed  Google Scholar 

  70. Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12(12):5447–5454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92(12):5510–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292(5516):468–472

    Article  CAS  PubMed  Google Scholar 

  73. Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. Nat Cell Biol 2(7):423–427. doi:10.1038/35017054

    Article  CAS  PubMed  Google Scholar 

  74. Makino Y, Kanopka A, Wilson WJ, Tanaka H, Poellinger L (2002) Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. J Biol Chem 277(36):32405–32408. doi:10.1074/jbc.C200328200C200328200

    Article  CAS  PubMed  Google Scholar 

  75. Peet D, Linke S (2006) Regulation of HIF: asparaginyl hydroxylation. Novartis Found Symp 272:37–49 (discussion 49–53, 131–140)

    Article  CAS  PubMed  Google Scholar 

  76. Mahon PC, Hirota K, Semenza GL (2001) FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15(20):2675–2686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Peet DJ, Lando D, Whelan DA, Whitelaw ML, Gorman JJ (2004) Oxygen-dependent asparagine hydroxylation. Methods Enzymol 381:467–487. doi:10.1016/S0076-6879(04)81031-0

    Article  CAS  PubMed  Google Scholar 

  78. Kallio PJ, Okamoto K, O’Brien S, Carrero P, Makino Y, Tanaka H, Poellinger L (1998) Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. EMBO J 17(22):6573–6586. doi:10.1093/emboj/17.22.6573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Koivunen P, Hirsila M, Gunzler V, Kivirikko KI, Myllyharju J (2004) Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J Biol Chem 279(11):9899–9904. doi:10.1074/jbc.M312254200M312254200

    Article  CAS  PubMed  Google Scholar 

  80. Pugh CW, Tan CC, Jones RW, Ratcliffe PJ (1991) Functional analysis of an oxygen-regulated transcriptional enhancer lying 3’ to the mouse erythropoietin gene. Proc Natl Acad Sci USA 88(23):10553–10557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732. doi:10.1038/nrc1187

    Article  CAS  PubMed  Google Scholar 

  82. Wenger RH, Stiehl DP (2005) Camenisch G (2005) Integration of oxygen signaling at the consensus HRE. Sci STKE 2005(306):re12. doi:10.1126/stke.3062005re12

    PubMed  Google Scholar 

  83. Hackett SF, Ozaki H, Strauss RW, Wahlin K, Suri C, Maisonpierre P, Yancopoulos G, Campochiaro PA (2000) Angiopoietin 2 expression in the retina: upregulation during physiologic and pathologic neovascularization. J Cell Physiol 184(3):275–284. doi:10.1002/1097-4652(200009)184:3<275:AID-JCP1>3.0.CO;2-7

    Article  CAS  PubMed  Google Scholar 

  84. Pierce EA, Avery RL, Foley ED, Aiello LP, Smith LE (1995) Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci USA 92(3):905–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dorey CK, Aouididi S, Reynaud X, Dvorak HF, Brown LF (1996) Correlation of vascular permeability factor/vascular endothelial growth factor with extraretinal neovascularization in the rat. Arch Ophthalmol 114(10):1210–1217

    Article  CAS  PubMed  Google Scholar 

  86. Lu M, Amano S, Miyamoto K, Garland R, Keough K, Qin W, Adamis AP (1999) Insulin-induced vascular endothelial growth factor expression in retina. Invest Ophthalmol Vis Sci 40(13):3281–3286

    CAS  PubMed  Google Scholar 

  87. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277(5322):55–60

    Article  CAS  PubMed  Google Scholar 

  88. Nambu H, Nambu R, Oshima Y, Hackett SF, Okoye G, Wiegand S, Yancopoulos G, Zack DJ, Campochiaro PA (2004) Angiopoietin 1 inhibits ocular neovascularization and breakdown of the blood-retinal barrier. Gene Ther 11(10):865–873. doi:10.1038/sj.gt.3302230

    Article  CAS  PubMed  Google Scholar 

  89. Oshima Y, Deering T, Oshima S, Nambu H, Reddy PS, Kaleko M, Connelly S, Hackett SF, Campochiaro PA (2004) Angiopoietin-2 enhances retinal vessel sensitivity to vascular endothelial growth factor. J Cell Physiol 199(3):412–417. doi:10.1002/jcp.10442

    Article  CAS  PubMed  Google Scholar 

  90. Carmeliet P, Tessier-Lavigne M (2005) Common mechanisms of nerve and blood vessel wiring. Nature 436(7048):193–200. doi:10.1038/nature03875

    Article  CAS  PubMed  Google Scholar 

  91. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  92. Koren S, Bentires-Alj M (2015) Breast tumor heterogeneity: source of fitness, hurdle for therapy. Mol Cell 60(4):537–546. doi:10.1016/j.molcel.2015.10.031

    Article  CAS  PubMed  Google Scholar 

  93. Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501(7467):328–337. doi:10.1038/nature12624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brooks MD, Burness ML, Wicha MS (2015) Therapeutic implications of cellular heterogeneity and plasticity in breast cancer. Cell Stem Cell 17(3):260–271. doi:10.1016/j.stem.2015.08.014

    Article  CAS  PubMed  Google Scholar 

  95. Masoud GN, Li W (2015) HIF-1alpha pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5(5):378–389. doi:10.1016/j.apsb.2015.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  96. Rey S, Semenza GL (2010) Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc Res 86(2):236–242. doi:10.1093/cvr/cvq045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Palazon A, Goldrath AW, Nizet V, Johnson RS (2014) HIF transcription factors, inflammation, and immunity. Immunity 41(4):518–528. doi:10.1016/j.immuni.2014.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Peng G, Liu Y (2015) Hypoxia-inducible factors in cancer stem cells and inflammation. Trends Pharmacol Sci 36(6):374–383. doi:10.1016/j.tips.2015.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Xia M, Bi K, Huang R, Cho MH, Sakamuru S, Miller SC, Li H, Sun Y, Printen J, Austin CP, Inglese J (2009) Identification of small molecule compounds that inhibit the HIF-1 signaling pathway. Mol Cancer 8:117. doi:10.1186/1476-4598-8-117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Xia Y, Choi HK, Lee K (2012) Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur J Med Chem 49:24–40. doi:10.1016/j.ejmech.2012.01.033

    Article  CAS  PubMed  Google Scholar 

  102. Burroughs SK, Kaluz S, Wang D, Wang K, Van Meir EG, Wang B (2013) Hypoxia inducible factor pathway inhibitors as anticancer therapeutics. Future Med Chem 5(5):553–572. doi:10.4155/fmc.13.17

    Article  CAS  PubMed  Google Scholar 

  103. Onnis B, Rapisarda A, Melillo G (2009) Development of HIF-1 inhibitors for cancer therapy. J Cell Mol Med 13(9A):2780–2786. doi:10.1111/j.1582-4934.2009.00876.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kelly BD, Hackett SF, Hirota K, Oshima Y, Cai Z, Berg-Dixon S, Rowan A, Yan Z, Campochiaro PA, Semenza GL (2003) Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res 93(11):1074–1081. doi:10.1161/01.RES.0000102937.50486.1B

    Article  CAS  PubMed  Google Scholar 

  105. Tolentino MJ, Miller JW, Gragoudas ES, Jakobiec FA, Flynn E, Chatzistefanou K, Ferrara N, Adamis AP (1996) Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology 103(11):1820–1828

    Article  CAS  PubMed  Google Scholar 

  106. Ozaki H, Hayashi H, Vinores SA, Moromizato Y, Campochiaro PA, Oshima K (1997) Intravitreal sustained release of VEGF causes retinal neovascularization in rabbits and breakdown of the blood-retinal barrier in rabbits and primates. Exp Eye Res 64(4):505–517. doi:10.1006/exer.1996.0239

    Article  CAS  PubMed  Google Scholar 

  107. Ohno-Matsui K, Hirose A, Yamamoto S, Saikia J, Okamoto N, Gehlbach P, Duh EJ, Hackett S, Chang M, Bok D, Zack DJ, Campochiaro PA (2002) Inducible expression of vascular endothelial growth factor in adult mice causes severe proliferative retinopathy and retinal detachment. Am J Pathol 160(2):711–719. doi:10.1016/S0002-9440(10)64891-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Winnicka K, Bielawski K, Bielawska A (2006) Cardiac glycosides in cancer research and cancer therapy. Acta Pol Pharm 63(2):109–115

    CAS  PubMed  Google Scholar 

  109. Riaz K, Forker AD (1998) Digoxin use in congestive heart failure. Current status. Drugs 55(6):747–758

    Article  CAS  PubMed  Google Scholar 

  110. Grossmann M (2001) Effects of cardiac glycosides on 24-h ambulatory blood pressure in healthy volunteers and patients with heart failure. Eur J Clin Invest 31(Suppl 2):26–30

    Article  PubMed  Google Scholar 

  111. Schoner W, Scheiner-Bobis G (2007) Endogenous and exogenous cardiac glycosides and their mechanisms of action. Am J Cardiovasc Drugs 7(3):173–189

    Article  CAS  PubMed  Google Scholar 

  112. Godfraind T (1982) The biphasic action of cardiac glycosides on the Na+, K+-pump and its relevance in the treatment of heart failure. Eur Heart J 3(Suppl D):53–57

    CAS  PubMed  Google Scholar 

  113. Mijatovic T, Van Quaquebeke E, Delest B, Debeir O, Darro F, Kiss R (2007) Cardiotonic steroids on the road to anti-cancer therapy. Biochim Biophys Acta 1776(1):32–57. doi:10.1016/j.bbcan.2007.06.002

    CAS  PubMed  Google Scholar 

  114. Beeler GW Jr (1977) Ionic currents in cardiac muscle: a framework for glycoside action. Fed Proc 36(9):2209–2213

    CAS  PubMed  Google Scholar 

  115. Katz AM (1972) Increased Ca 2+ entry during the plateau of the action potential: a possible mechanism of cardiac glycoside action. J Mol Cell Cardiol 4(1):87–89

    Article  CAS  PubMed  Google Scholar 

  116. Lee KS, Klaus W (1971) The subcellular basis for the mechanism of inotropic action of cardiac glycosides. Pharmacol Rev 23(3):193–261

    CAS  PubMed  Google Scholar 

  117. Miura DS, Biedert S (1985) Cellular mechanisms of digitalis action. J Clin Pharmacol 25(7):490–500

    Article  CAS  PubMed  Google Scholar 

  118. Johansson S, Lindholm P, Gullbo J, Larsson R, Bohlin L, Claeson P (2001) Cytotoxicity of digitoxin and related cardiac glycosides in human tumor cells. Anticancer Drugs 12(5):475–483

    Article  CAS  PubMed  Google Scholar 

  119. Lopez-Lazaro M, Pastor N, Azrak SS, Ayuso MJ, Austin CA, Cortes F (2005) Digitoxin inhibits the growth of cancer cell lines at concentrations commonly found in cardiac patients. J Nat Prod 68(11):1642–1645. doi:10.1021/np050226l

    Article  CAS  PubMed  Google Scholar 

  120. Yeh JY, Huang WJ, Kan SF, Wang PS (2001) Inhibitory effects of digitalis on the proliferation of androgen dependent and independent prostate cancer cells. J Urol 166(5):1937–1942

    Article  CAS  PubMed  Google Scholar 

  121. Zhao M, Bai L, Wang L, Toki A, Hasegawa T, Kikuchi M, Abe M, Sakai J, Hasegawa R, Bai Y, Mitsui T, Ogura H, Kataoka T, Oka S, Tsushima H, Kiuchi M, Hirose K, Tomida A, Tsuruo T, Ando M (2007) Bioactive cardenolides from the stems and twigs of Nerium oleander. J Nat Prod 70(7):1098–1103. doi:10.1021/np068066g

    Article  CAS  PubMed  Google Scholar 

  122. Huang YT, Chueh SC, Teng CM, Guh JH (2004) Investigation of ouabain-induced anticancer effect in human androgen-independent prostate cancer PC-3 cells. Biochem Pharmacol 67(4):727–733

    Article  CAS  PubMed  Google Scholar 

  123. Bielawski K, Winnicka K, Bielawska A (2006) Inhibition of DNA topoisomerases I and II, and growth inhibition of breast cancer MCF-7 cells by ouabain, digoxin and proscillaridin A. Biol Pharm Bull 29(7):1493–1497

    Article  CAS  PubMed  Google Scholar 

  124. Wang Z, Zheng M, Li Z, Li R, Jia L, Xiong X, Southall N, Wang S, Xia M, Austin CP, Zheng W, Xie Z, Sun Y (2009) Cardiac glycosides inhibit p53 synthesis by a mechanism relieved by Src or MAPK inhibition. Cancer Res 69(16):6556–6564. doi:10.1158/0008-5472.CAN-09-0891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xie CM, Liu XY, Yu S, Cheng CH (2013) Cardiac glycosides block cancer growth through HIF-1alpha- and NF-kappaB-mediated Plk1. Carcinogenesis 34(8):1870–1880. doi:10.1093/carcin/bgt136

    Article  CAS  PubMed  Google Scholar 

  126. Kepp O, Menger L, Vacchelli E, Adjemian S, Martins I, Ma Y, Sukkurwala AQ, Michaud M, Galluzzi L, Zitvogel L, Kroemer G (2012) Anticancer activity of cardiac glycosides: at the frontier between cell-autonomous and immunological effects. Oncoimmunology 1(9):1640–1642. doi:10.4161/onci.21684

    Article  PubMed  PubMed Central  Google Scholar 

  127. Svensson A, Azarbayjani F, Backman U, Matsumoto T, Christofferson R (2005) Digoxin inhibits neuroblastoma tumor growth in mice. Anticancer Res 25(1A):207–212

    CAS  PubMed  Google Scholar 

  128. Zhang H, Qian DZ, Tan YS, Lee K, Gao P, Ren YR, Rey S, Hammers H, Chang D, Pili R, Dang CV, Liu JO, Semenza GL (2008) Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc Natl Acad Sci USA 105(50):19579–19586. doi:10.1073/pnas.08097631050809763105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yoshida T, Zhang H, Iwase T, Shen J, Semenza GL, Campochiaro PA (2010) Digoxin inhibits retinal ischemia-induced HIF-1alpha expression and ocular neovascularization. Faseb J 24(6):1759–1767. doi:10.1096/fj.09-145664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Weiss RB (1992) The anthracyclines: Will we ever find a better doxorubicin? Semin Oncol 19(6):670–686

    CAS  PubMed  Google Scholar 

  131. Hande KR (2003) Topoisomerase II inhibitors. Cancer Chemother Biol Response Modif 21:103–125

    Article  CAS  PubMed  Google Scholar 

  132. Duyndam MC, van Berkel MP, Dorsman JC, Rockx DA, Pinedo HM, Boven E (2007) Cisplatin and doxorubicin repress vascular endothelial growth factor expression and differentially down-regulate hypoxia-inducible factor I activity in human ovarian cancer cells. Biochem Pharmacol 74(2):191–201. doi:10.1016/j.bcp.2007.04.003

    Article  CAS  PubMed  Google Scholar 

  133. Drevs J, Fakler J, Eisele S, Medinger M, Bing G, Esser N, Marme D, Unger C (2004) Antiangiogenic potency of various chemotherapeutic drugs for metronomic chemotherapy. Anticancer Res 24(3a):1759–1763

    CAS  PubMed  Google Scholar 

  134. Lee K, Qian DZ, Rey S, Wei H, Liu JO, Semenza GL (2009) Anthracycline chemotherapy inhibits HIF-1 transcriptional activity and tumor-induced mobilization of circulating angiogenic cells. Proc Natl Acad Sci USA 106(7):2353–2358. doi:10.1073/pnas.08128011060812801106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Iwase T, Fu J, Yoshida T, Muramatsu D, Miki A, Hashida N, Lu L, Oveson B, Lima e Silva R, Seidel C, Yang M, Connelly S, Shen J, Han B, Wu M, Semenza GL, Hanes J, Campochiaro PA (2013) Sustained delivery of a HIF-1 antagonist for ocular neovascularization. J Control Release 172(3):625–633. doi:10.1016/j.jconrel.2013.10.008

    Article  CAS  PubMed  Google Scholar 

  136. Chun YS, Yeo EJ, Park JW (2004) Versatile pharmacological actions of YC-1: anti-platelet to anticancer. Cancer Lett 207(1):1–7

    Article  CAS  PubMed  Google Scholar 

  137. Ko FN, Wu CC, Kuo SC, Lee FY, Teng CM (1994) YC-1, a novel activator of platelet guanylate cyclase. Blood 84(12):4226–4233

    CAS  PubMed  Google Scholar 

  138. Yeo EJ, Chun YS, Cho YS, Kim J, Lee JC, Kim MS, Park JW (2003) YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J Natl Cancer Inst 95(7):516–525

    Article  CAS  PubMed  Google Scholar 

  139. Yeo EJ, Ryu JH, Chun YS, Cho YS, Jang IJ, Cho H, Kim J, Kim MS, Park JW (2006) YC-1 induces S cell cycle arrest and apoptosis by activating checkpoint kinases. Cancer Res 66(12):6345–6352. doi:10.1158/0008-5472.CAN-05-4460

    Article  CAS  PubMed  Google Scholar 

  140. Melillo G (2007) Targeting hypoxia cell signaling for cancer therapy. Cancer Metastasis Rev 26(2):341–352. doi:10.1007/s10555-007-9059-x

    Article  CAS  PubMed  Google Scholar 

  141. Kim HL, Yeo EJ, Chun YS, Park JW (2006) A domain responsible for HIF-1alpha degradation by YC-1, a novel anticancer agent. Int J Oncol 29(1):255–260

    CAS  PubMed  Google Scholar 

  142. Sun HL, Liu YN, Huang YT, Pan SL, Huang DY, Guh JH, Lee FY, Kuo SC, Teng CM (2007) YC-1 inhibits HIF-1 expression in prostate cancer cells: contribution of Akt/NF-kappaB signaling to HIF-1alpha accumulation during hypoxia. Oncogene 26(27):3941–3951. doi:10.1038/sj.onc.1210169

    Article  CAS  PubMed  Google Scholar 

  143. Lau CK, Yang ZF, Lam CT, Tam KH, Poon RT, Fan ST (2006) Suppression of hypoxia inducible factor-1alpha (HIF-1alpha) by YC-1 is dependent on murine double minute 2 (Mdm2). Biochem Biophys Res Commun 348(4):1443–1448. doi:10.1016/j.bbrc.2006.08.015

    Article  CAS  PubMed  Google Scholar 

  144. Li SH, Shin DH, Chun YS, Lee MK, Kim MS, Park JW (2008) A novel mode of action of YC-1 in HIF inhibition: stimulation of FIH-dependent p300 dissociation from HIF-1{alpha}. Mol Cancer Ther 7(12):3729–3738. doi:10.1158/1535-7163.MCT-08-0074

    Article  CAS  PubMed  Google Scholar 

  145. Song SJ, Chung H, Yu HG (2008) Inhibitory effect of YC-1, 3-(5’-hydroxymethyl-2’-furyl)-1-benzylindazole, on experimental choroidal neovascularization in rat. Ophthalmic Res 40(1):35–40. doi:10.1159/000111157

    Article  PubMed  CAS  Google Scholar 

  146. DeNiro M, Al-Mohanna FH, Al-Mohanna FA (2011) Inhibition of reactive gliosis prevents neovascular growth in the mouse model of oxygen-induced retinopathy. PLoS ONE 6(7):e22244. doi:10.1371/journal.pone.0022244PONE-D-11-03189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lee YJ, Lee YM, Lee CK, Jung JK, Han SB, Hong JT (2011) Therapeutic applications of compounds in the Magnolia family. Pharmacol Ther 130(2):157–176. doi:10.1016/j.pharmthera.2011.01.010

    Article  CAS  PubMed  Google Scholar 

  148. Fried LE, Arbiser JL (2009) Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxid Redox Signal 11(5):1139–1148. doi:10.1089/ARS.2009.244010.1089/ARS.2009.2440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kumar A, Kumar Singh U, Chaudhary A (2013) Honokiol analogs: a novel class of anticancer agents targeting cell signaling pathways and other bioactivities. Future Med Chem 5(7):809–829. doi:10.4155/fmc.13.32

    Article  CAS  PubMed  Google Scholar 

  150. Liu H, Zang C, Emde A, Planas-Silva MD, Rosche M, Kuhnl A, Schulz CO, Elstner E, Possinger K, Eucker J (2008) Anti-tumor effect of honokiol alone and in combination with other anti-cancer agents in breast cancer. Eur J Pharmacol 591(1–3):43–51. doi:10.1016/j.ejphar.2008.06.026

    Article  CAS  PubMed  Google Scholar 

  151. Yang SE, Hsieh MT, Tsai TH, Hsu SL (2002) Down-modulation of Bcl-XL, release of cytochrome c and sequential activation of caspases during honokiol-induced apoptosis in human squamous lung cancer CH27 cells. Biochem Pharmacol 63(9):1641–1651

    Article  CAS  PubMed  Google Scholar 

  152. Wang T, Chen F, Chen Z, Wu YF, Xu XL, Zheng S, Hu X (2004) Honokiol induces apoptosis through p53-independent pathway in human colorectal cell line RKO. World J Gastroenterol 10(15):2205–2208

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Battle TE, Arbiser J, Frank DA (2005) The natural product honokiol induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells. Blood 106(2):690–697. doi:10.1182/blood-2004-11-4273

    Article  CAS  PubMed  Google Scholar 

  154. Ishitsuka K, Hideshima T, Hamasaki M, Raje N, Kumar S, Hideshima H, Shiraishi N, Yasui H, Roccaro AM, Richardson P, Podar K, Le Gouill S, Chauhan D, Tamura K, Arbiser J, Anderson KC (2005) Honokiol overcomes conventional drug resistance in human multiple myeloma by induction of caspase-dependent and -independent apoptosis. Blood 106(5):1794–1800. doi:10.1182/blood-2005-01-0346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bai X, Cerimele F, Ushio-Fukai M, Waqas M, Campbell PM, Govindarajan B, Der CJ, Battle T, Frank DA, Ye K, Murad E, Dubiel W, Soff G, Arbiser JL (2003) Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. J Biol Chem 278(37):35501–35507. doi:10.1074/jbc.M302967200

    Article  CAS  PubMed  Google Scholar 

  156. Ponnaluri VK, Vadlapatla RK, Vavilala DT, Pal D, Mitra AK, Mukherji M (2011) Hypoxia induced expression of histone lysine demethylases: implications in oxygen-dependent retinal neovascular diseases. Biochem Biophys Res Commun 415(2):373–377. doi:10.1016/j.bbrc.2011.10.075

    Article  CAS  PubMed  Google Scholar 

  157. Vavilala DT, Ponnaluri VK, Kanjilal D, Mukherji M (2014) Evaluation of anti-HIF and anti-angiogenic properties of honokiol for the treatment of ocular neovascular diseases. PLoS ONE 9(11):e113717. doi:10.1371/journal.pone.0113717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Vavilala DT, O’Bryhim BE, Ponnaluri VK, White RS, Radel J, Symons RC, Mukherji M (2013) Honokiol inhibits pathological retinal neovascularization in oxygen-induced retinopathy mouse model. Biochem Biophys Res Commun 438(4):697–702. doi:10.1016/j.bbrc.2013.07.118S0006-291X(13)01303-X

    Article  CAS  PubMed  Google Scholar 

  159. Keith B, Johnson RS, Simon MC (2012) HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 12(1):9–22. doi:10.1038/nrc3183

    CAS  Google Scholar 

  160. Franovic A, Holterman CE, Payette J, Lee S (2009) Human cancers converge at the HIF-2alpha oncogenic axis. Proc Natl Acad Sci USA 106(50):21306–21311. doi:10.1073/pnas.0906432106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wang Y, Liu Y, Malek SN, Zheng P (2011) Targeting HIF1alpha eliminates cancer stem cells in hematological malignancies. Cell Stem Cell 8(4):399–411. doi:10.1016/j.stem.2011.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Shin DH, Kim JH, Jung YJ, Kim KE, Jeong JM, Chun YS, Park JW (2007) Preclinical evaluation of YC-1, a HIF inhibitor, for the prevention of tumor spreading. Cancer Lett 255(1):107–116. doi:10.1016/j.canlet.2007.03.026

    Article  CAS  PubMed  Google Scholar 

  163. Koh MY, Spivak-Kroizman T, Venturini S, Welsh S, Williams RR, Kirkpatrick DL, Powis G (2008) Molecular mechanisms for the activity of PX-478, an antitumor inhibitor of the hypoxia-inducible factor-1alpha. Mol Cancer Ther 7(1):90–100. doi:10.1158/1535-7163.MCT-07-0463

    Article  CAS  PubMed  Google Scholar 

  164. Welsh S, Williams R, Kirkpatrick L, Paine-Murrieta G, Powis G (2004) Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1alpha. Mol Cancer Ther 3(3):233–244

    CAS  PubMed  Google Scholar 

  165. Jacoby JJ, Erez B, Korshunova MV, Williams RR, Furutani K, Takahashi O, Kirkpatrick L, Lippman SM, Powis G, O’Reilly MS, Herbst RS (2010) Treatment with HIF-1alpha antagonist PX-478 inhibits progression and spread of orthotopic human small cell lung cancer and lung adenocarcinoma in mice. J Thorac Oncol 5(7):940–949. doi:10.1097/JTO.0b013e3181dc211f

    Article  PubMed  PubMed Central  Google Scholar 

  166. Lee K, Kim HM (2011) A novel approach to cancer therapy using PX-478 as a HIF-1alpha inhibitor. Arch Pharmacal Res 34(10):1583–1585. doi:10.1007/s12272-011-1021-3

    Article  CAS  Google Scholar 

  167. Chau NM, Rogers P, Aherne W, Carroll V, Collins I, McDonald E, Workman P, Ashcroft M (2005) Identification of novel small molecule inhibitors of hypoxia-inducible factor-1 that differentially block hypoxia-inducible factor-1 activity and hypoxia-inducible factor-1alpha induction in response to hypoxic stress and growth factors. Cancer Res 65(11):4918–4928. doi:10.1158/0008-5472.CAN-04-4453

    Article  CAS  PubMed  Google Scholar 

  168. Baker LC, Boult JK, Walker-Samuel S, Chung YL, Jamin Y, Ashcroft M, Robinson SP (2012) The HIF-pathway inhibitor NSC-134754 induces metabolic changes and anti-tumour activity while maintaining vascular function. Br J Cancer 106(10):1638–1647. doi:10.1038/bjc.2012.131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Yeo EJ, Ryu JH, Cho YS, Chun YS, Huang LE, Kim MS, Park JW (2006) Amphotericin B blunts erythropoietin response to hypoxia by reinforcing FIH-mediated repression of HIF-1. Blood 107(3):916–923. doi:10.1182/blood-2005-06-2564

    Article  CAS  PubMed  Google Scholar 

  170. Kang Q, Tang M, Hou Y, Duan L, Chen X, Shu J, Wu F, Wang Y, Li S (2014) [Amphotericin B suppresses migration and invasion of esophageal carcinoma Eca109 cells in hypoxic microenvironment by down-regulating hypoxia-inducible factor-1alpha activity]. Nan fang yi ke da xue xue bao 34(6):798–801

    CAS  PubMed  Google Scholar 

  171. Viziteu E, Grandmougin C, Goldschmidt H, Seckinger A, Hose D, Klein B, Moreaux J (2016) Chetomin, targeting HIF-1alpha/p300 complex, exhibits antitumour activity in multiple myeloma. Br J Cancer 114(5):519–523. doi:10.1038/bjc.2016.20

    Article  CAS  PubMed  Google Scholar 

  172. Staab A, Loeffler J, Said HM, Diehlmann D, Katzer A, Beyer M, Fleischer M, Schwab F, Baier K, Einsele H, Flentje M, Vordermark D (2007) Effects of HIF-1 inhibition by chetomin on hypoxia-related transcription and radiosensitivity in HT 1080 human fibrosarcoma cells. BMC Cancer 7:213. doi:10.1186/1471-2407-7-213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Gayed BA, O’Malley KJ, Pilch J, Wang Z (2012) Digoxin inhibits blood vessel density and HIF-1a expression in castration-resistant C4-2 xenograft prostate tumors. Clin Transl Sci 5(1):39–42. doi:10.1111/j.1752-8062.2011.00376.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Lin J, Zhan T, Duffy D, Hoffman-Censits J, Kilpatrick D, Trabulsi EJ, Lallas CD, Chervoneva I, Limentani K, Kennedy B, Kessler S, Gomella L, Antonarakis ES, Carducci MA, Force T, Kelly WK (2014) A pilot phase II study of digoxin in patients with recurrent prostate cancer as evident by a rising PSA. Am J Cancer Ther Pharmacol 2(1):21–32

    PubMed  PubMed Central  Google Scholar 

  175. Shin DH, Chun YS, Lee DS, Huang LE, Park JW (2008) Bortezomib inhibits tumor adaptation to hypoxia by stimulating the FIH-mediated repression of hypoxia-inducible factor-1. Blood 111(6):3131–3136. doi:10.1182/blood-2007-11-120576

    Article  CAS  PubMed  Google Scholar 

  176. Kretowski R, Stypulkowska A, Cechowska-Pasko M (2015) Efficient apoptosis and necrosis induction by proteasome inhibitor: bortezomib in the DLD-1 human colon cancer cell line. Mol Cell Biochem 398(1–2):165–173. doi:10.1007/s11010-014-2216-y

    Article  CAS  PubMed  Google Scholar 

  177. Befani CD, Vlachostergios PJ, Hatzidaki E, Patrikidou A, Bonanou S, Simos G, Papandreou CN, Liakos P (2012) Bortezomib represses HIF-1alpha protein expression and nuclear accumulation by inhibiting both PI3 K/Akt/TOR and MAPK pathways in prostate cancer cells. J Mol Med 90(1):45–54. doi:10.1007/s00109-011-0805-8

    Article  CAS  PubMed  Google Scholar 

  178. Greenberger LM, Horak ID, Filpula D, Sapra P, Westergaard M, Frydenlund HF, Albaek C, Schroder H, Orum H (2008) A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth. Mol Cancer Ther 7(11):3598–3608. doi:10.1158/1535-7163.MCT-08-0510

    Article  CAS  PubMed  Google Scholar 

  179. Lee YM, Lim JH, Yoon H, Chun YS, Park JW (2011) Antihepatoma activity of chaetocin due to deregulated splicing of hypoxia-inducible factor 1alpha pre-mRNA in mice and in vitro. Hepatology 53(1):171–180. doi:10.1002/hep.24010

    Article  CAS  PubMed  Google Scholar 

  180. Yin S, Kaluz S, Devi NS, Jabbar AA, de Noronha RG, Mun J, Zhang Z, Boreddy PR, Wang W, Wang Z, Abbruscato T, Chen Z, Olson JJ, Zhang R, Goodman MM, Nicolaou KC, Van Meir EG (2012) Arylsulfonamide KCN1 inhibits in vivo glioma growth and interferes with HIF signaling by disrupting HIF-1alpha interaction with cofactors p300/CBP. Clin Cancer Res 18(24):6623–6633. doi:10.1158/1078-0432.CCR-12-0861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Wang W, Ao L, Rayburn ER, Xu H, Zhang X, Zhang X, Nag SA, Wu X, Wang MH, Wang H, Van Meir EG, Zhang R (2012) KCN1, a novel synthetic sulfonamide anticancer agent: in vitro and in vivo anti-pancreatic cancer activities and preclinical pharmacology. PLoS ONE 7(9):e44883. doi:10.1371/journal.pone.0044883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Welsh SJ, Dale AG, Lombardo CM, Valentine H, de la Fuente M, Schatzlein A, Neidle S (2013) Inhibition of the hypoxia-inducible factor pathway by a G-quadruplex binding small molecule. Sci Rep 3:2799. doi:10.1038/srep02799

    Article  PubMed  PubMed Central  Google Scholar 

  183. Kim YH, Coon A, Baker AF, Powis G (2011) Antitumor agent PX-12 inhibits HIF-1alpha protein levels through an Nrf2/PMF-1-mediated increase in spermidine/spermine acetyl transferase. Cancer Chemother Pharmacol 68(2):405–413. doi:10.1007/s00280-010-1500-0

    Article  CAS  PubMed  Google Scholar 

  184. Baker AF, Dragovich T, Tate WR, Ramanathan RK, Roe D, Hsu CH, Kirkpatrick DL, Powis G (2006) The antitumor thioredoxin-1 inhibitor PX-12 (1-methylpropyl 2-imidazolyl disulfide) decreases thioredoxin-1 and VEGF levels in cancer patient plasma. J Lab Clin Med 147(2):83–90. doi:10.1016/j.lab.2005.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ramanathan RK, Stephenson JJ, Weiss GJ, Pestano LA, Lowe A, Hiscox A, Leos RA, Martin JC, Kirkpatrick L, Richards DA (2012) A phase I trial of PX-12, a small-molecule inhibitor of thioredoxin-1, administered as a 72-hour infusion every 21 days in patients with advanced cancers refractory to standard therapy. Invest New Drugs 30(4):1591–1596. doi:10.1007/s10637-011-9739-9

    Article  CAS  PubMed  Google Scholar 

  186. Welsh SJ, Williams RR, Birmingham A, Newman DJ, Kirkpatrick DL, Powis G (2003) The thioredoxin redox inhibitors 1-methylpropyl 2-imidazolyl disulfide and pleurotin inhibit hypoxia-induced factor 1alpha and vascular endothelial growth factor formation. Mol Cancer Ther 2(3):235–243

    CAS  PubMed  Google Scholar 

  187. Lee K, Kang JE, Park SK, Jin Y, Chung KS, Kim HM, Lee K, Kang MR, Lee MK, Song KB, Yang EG, Lee JJ, Won M (2010) LW6, a novel HIF-1 inhibitor, promotes proteasomal degradation of HIF-1alpha via upregulation of VHL in a colon cancer cell line. Biochem Pharmacol 80(7):982–989. doi:10.1016/j.bcp.2010.06.018

    Article  CAS  PubMed  Google Scholar 

  188. Kong HS, Lee S, Beebe K, Scroggins B, Gupta G, Lee MJ, Jung YJ, Trepel J, Neckers L (2010) Emetine promotes von Hippel–Lindau-independent degradation of hypoxia-inducible factor-2alpha in clear cell renal carcinoma. Mol Pharmacol 78(6):1072–1078. doi:10.1124/mol.110.066514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhou YD, Kim YP, Mohammed KA, Jones DK, Muhammad I, Dunbar DC, Nagle DG (2005) Terpenoid tetrahydroisoquinoline alkaloids emetine, klugine, and isocephaeline inhibit the activation of hypoxia-inducible factor-1 in breast tumor cells. J Nat Prod 68(6):947–950. doi:10.1021/np050029m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Lan KL, Lan KH, Sheu ML, Chen MY, Shih YS, Hsu FC, Wang HM, Liu RS, Yen SH (2011) Honokiol inhibits hypoxia-inducible factor-1 pathway. Int J Radiat Biol 87(6):579–590. doi:10.3109/09553002.2011.568572

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mridul Mukherji.

Additional information

Saima Subhani and Divya Teja Vavilala equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subhani, S., Vavilala, D.T. & Mukherji, M. HIF inhibitors for ischemic retinopathies and cancers: options beyond anti-VEGF therapies. Angiogenesis 19, 257–273 (2016). https://doi.org/10.1007/s10456-016-9510-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-016-9510-0

Keywords

Navigation