Skip to main content
Log in

Decline of lymphatic vessel density and function in murine skin during aging

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Lymphatic vessels play important roles in the pathogenesis of many conditions that have an increased prevalence in the elderly population. However, the effects of the aging process on the lymphatic system are still relatively unknown. We have applied non-invasive imaging and whole-mount staining techniques to assess the lymphatic vessel function and morphology in three different age groups of mice: 2 months (young), 7 months (middle-aged), and 18 months (aged). We first developed and validated a new method to quantify lymphatic clearance from mouse ear skin, using a lymphatic-specific near-infrared tracer. Using this method, we found that there is a prominent decrease in lymphatic vessel function during aging since the lymphatic clearance was significantly delayed in aged mice. This loss of function correlated with a decreased lymphatic vessel density and a reduced lymphatic network complexity in the skin of aged mice as compared to younger controls. The blood vascular leakage in the skin was slightly increased in the aged mice, indicating that the decreased lymphatic function was not caused by a reduced capillary filtration in aged skin. The decreased function of lymphatic vessels with aging might have implications for the pathogenesis of a number of aging-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alitalo K (2011) The lymphatic vasculature in disease. Nat Med 17(11):1371–1380. doi:10.1038/nm.2545

    Article  CAS  PubMed  Google Scholar 

  2. Proulx ST, Luciani P, Dieterich L, Karaman S, Leroux JC, Detmar M (2013) Expansion of the lymphatic vasculature in cancer and inflammation: new opportunities for in vivo imaging and drug delivery. J Control Release 172(2):500–507. doi:10.1016/j.jconrel.2013.04.027

    Article  Google Scholar 

  3. Martel C, Li W, Fulp B, Platt AM, Gautier EL, Westerterp M, Bittman R, Tall AR, Chen SH, Thomas MJ, Kreisel D, Swartz MA, Sorci-Thomas MG, Randolph GJ (2013) Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J Clin Invest 123(4):1571–1579. doi:10.1172/JCI63685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Lim HY, Thiam CH, Yeo KP, Bisoendial R, Hii CS, McGrath KCY, Tan KW, Heather A, Alexander JSJ, Angeli V (2013) Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL. Cell Metab 17(5):671–684. doi:10.1016/j.cmet.2013.04.002

    Article  CAS  PubMed  Google Scholar 

  5. Wiig H, Schroder A, Neuhofer W, Jantsch J, Kopp C, Karlsen TV, Boschmann M, Goss J, Bry M, Rakova N, Dahlmann A, Brenner S, Tenstad O, Nurmi H, Mervaala E, Wagner H, Beck FX, Muller DN, Kerjaschki D, Luft FC, Harrison DG, Alitalo K, Titze J (2013) Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J Clin Invest 123(7):2803–2815. doi:10.1172/JCI60113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Ryan T (2004) The ageing of the blood supply and the lymphatic drainage of the skin. Micron 35(3):161–171. doi:10.1016/j.micron.2003.11.010

    Article  CAS  PubMed  Google Scholar 

  7. Mortimer PS (1995) Evaluation of lymphatic function: abnormal lymph drainage in venous disease. Int Angiol 14(3 Suppl 1):32–35

    CAS  PubMed  Google Scholar 

  8. Conway WC, Faries MB, Nicholl MB, Terando AM, Glass EC, Sim M, Morton DL (2009) Age-related lymphatic dysfunction in melanoma patients. Ann Surg Oncol 16(6):1548–1552. doi:10.1245/s10434-009-0420-x

    Article  PubMed Central  PubMed  Google Scholar 

  9. Gasheva OY, Knippa K, Nepiushchikh ZV, Muthuchamy M, Gashev AA (2007) Age-related alterations of active pumping mechanisms in rat thoracic duct. Microcirculation 14(8):827–839. doi:10.1080/10739680701444065

    Article  CAS  PubMed  Google Scholar 

  10. Nagai T, Bridenbaugh EA, Gashev AA (2011) Aging-associated alterations in contractility of rat mesenteric lymphatic vessels. Microcirculation 18(6):463–473. doi:10.1111/j.1549-8719.2011.00107.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Akl TJ, Nagai T, Cote GL, Gashev AA (2011) Mesenteric lymph flow in adult and aged rats. Am J Physiol Heart Circ Physiol 301(5):H1828–H1840. doi:10.1152/ajpheart.00538.2011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Unno N, Tanaka H, Suzuki M, Yamamoto N, Mano Y, Sano M, Saito T, Konno H (2011) Influence of age and gender on human lymphatic pumping pressure in the leg. Lymphology 44(3):113–120

    CAS  PubMed  Google Scholar 

  13. Modi S, Stanton A, Mortimer P, Levick J (2007) Clinical assessment of human lymph flow using removal rate constants of interstitial macromolecules: a critical review of lymphoscintigraphy. Lymphat Res Biol 5(3):183–202

    Article  CAS  PubMed  Google Scholar 

  14. Karlsen TV, McCormack E, Mujic M, Tenstad O, Wiig H (2012) Minimally invasive quantification of lymph flow in mice and rats by imaging depot clearance of near-infrared albumin. Am J Physiol Heart Circ Physiol 302(2):H391–H401. doi:10.1152/ajpheart.00842.2011

    Article  CAS  PubMed  Google Scholar 

  15. Proulx ST, Luciani P, Christiansen A, Karaman S, Blum KS, Rinderknecht M, Leroux JC, Detmar M (2013) Use of a PEG-conjugated bright near-infrared dye for functional imaging of rerouting of tumor lymphatic drainage after sentinel lymph node metastasis. Biomaterials 34(21):5128–5137. doi:10.1016/j.biomaterials.2013.03.034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Jeltsch M, Kaipainen A, Joukov V, Meng X, Lakso M, Rauvala H, Swartz M, Fukumura D, Jain RK, Alitalo K (1997) Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276(5317):1423–1425

    Article  CAS  PubMed  Google Scholar 

  17. Mäkinen T, Jussila L, Veikkola T, Karpanen T, Kettunen M, Pulkkanen K, Kauppinen R, Jackson D, Kubo H, Nishikawa S, Alitalo K (2001) Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med 7:199–205

    Article  PubMed  Google Scholar 

  18. Proulx ST, Luciani P, Alitalo A, Mumprecht V, Christiansen AJ, Huggenberger R, Leroux JC, Detmar M (2013) Non-invasive dynamic near-infrared imaging and quantification of vascular leakage in vivo. Angiogenesis 34(21):5128–5137. doi:10.1007/s10456-013-9332-2

    CAS  Google Scholar 

  19. Ott P, Keiding S, Bass L (1993) Plasma elimination of indocyanine green in the intact pig after bolus injection and during constant infusion: comparison of spectrophotometry and high-pressure liquid chromatography for concentration analysis. Hepatology 18(6):1504–1515

    CAS  PubMed  Google Scholar 

  20. Huggenberger R, Siddiqui SS, Brander D, Ullmann S, Zimmermann K, Antsiferova M, Werner S, Alitalo K, Detmar M (2011) An important role of lymphatic vessel activation in limiting acute inflammation. Blood 117(17):4667–4678.  doi:10.1182/blood-2010-10-316356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Karaman S, Hollmen M, Robciuc MR, Alitalo A, Nurmi H, Morf B, Buschle D, Alkan HF, Ochsenbein AM, Alitalo K, Wolfrum C, Detmar M (2015) Blockade of VEGF-C and VEGF-D modulates adipose tissue inflammation and improves metabolic parameters under high-fat diet. Mol Metab 4(2):93–105. doi:10.1016/j.molmet.2014.11.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Iolyeva M, Karaman S, Willrodt AH, Weingartner S, Vigl B, Halin C (2012) Novel role for ALCAM in lymphatic network formation and function. FASEB J 27(3):978–990. doi:10.1096/fj.12-217844

    Article  PubMed  Google Scholar 

  23. Lohela M, Heloterä H, Haiko P, Dumont DJ, Alitalo K (2008) Transgenic induction of vascular endothelial growth factor-C is strongly angiogenic in mouse embryos but leads to persistent lymphatic hyperplasia in adult tissues. Am J Pathol 173(6):1891–1901. doi:10.2353/ajpath.2008.080378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Blum KS, Karaman S, Proulx ST, Ochsenbein AM, Luciani P, Leroux JC, Wolfrum C, Detmar M (2014) Chronic high-fat diet impairs collecting lymphatic vessel function in mice. PLoS ONE 9(4):e94713. doi:10.1371/journal.pone.0094713

    Article  PubMed Central  PubMed  Google Scholar 

  25. Markhus CE, Karlsen TV, Wagner M, Svendsen OS, Tenstad O, Alitalo K, Wiig H (2013) Increased interstitial protein because of impaired lymph drainage does not induce fibrosis and inflammation in lymphedema. Arterioscler Thromb Vasc Biol 33(2):266–274. doi:10.1161/ATVBAHA.112.300384

    Article  CAS  PubMed  Google Scholar 

  26. Huggenberger R, Ullmann S, Proulx ST, Pytowski B, Alitalo K, Detmar M (2010) Stimulation of lymphangiogenesis via VEGFR-3 inhibits chronic skin inflammation. J Exp Med 207(10):2255–2269. doi:10.1084/jem.20100559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Yabluchanskiy A, Ma Y, Chiao YA, Lopez EF, Voorhees AP, Toba H, Hall ME, Han HC, Lindsey ML, Jin YF (2014) Cardiac aging is initiated by matrix metalloproteinase-9-mediated endothelial dysfunction. Am J Physiol Heart Circ Physiol 306(10):H1398–H1407. doi:10.1152/ajpheart.00090.2014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Pelegri C, Canudas AM, del Valle J, Casadesus G, Smith MA, Camins A, Pallas M, Vilaplana J (2007) Increased permeability of blood-brain barrier on the hippocampus of a murine model of senescence. Mech Ageing Dev 128(9):522–528. doi:10.1016/j.mad.2007.07.002

    Article  CAS  PubMed  Google Scholar 

  29. Chung JH, Yano K, Lee MK, Youn CS, Seo JY, Kim KH, Cho KH, Eun HC, Detmar M (2002) Differential effects of photoaging vs intrinsic aging on the vascularization of human skin. Arch Dermatol 138(11):1437–1442

    Article  PubMed  Google Scholar 

  30. Kajiya K, Kunstfeld R, Detmar M, Chung JH (2007) Reduction of lymphatic vessels in photodamaged human skin. J Dermatol Sci 47(3):241–243. doi:10.1016/j.jdermsci.2007.05.003

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Jeannette Scholl and Carlos Ochoa for excellent technical assistance. This work was supported by Swiss National Science Foundation Grants 3100A0-108207 and 31003A-130627, Advanced European Research Council Grant LYVICAM, Oncosuisse, Krebsliga Zurich, and Leducq Transatlantic Network of Excellence on Lymph Vessels in Obesity and Cardiovascular Disease (11CVD03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven T. Proulx.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1734 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaman, S., Buschle, D., Luciani, P. et al. Decline of lymphatic vessel density and function in murine skin during aging. Angiogenesis 18, 489–498 (2015). https://doi.org/10.1007/s10456-015-9479-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-015-9479-0

Keywords

Navigation