Skip to main content
Log in

Neuronal sirtuin1 mediates retinal vascular regeneration in oxygen-induced ischemic retinopathy

  • Brief Communication
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Regeneration of blood vessels in ischemic neuronal tissue is critical to reduce tissue damage in diseases. In proliferative retinopathy, initial vessel loss leads to retinal ischemia, which can induce either regrowth of vessels to restore normal metabolism and minimize damage, or progress to hypoxia-induced sight-threatening pathologic vaso-proliferation. It is not well understood how retinal neurons mediate regeneration of vascular growth in response to ischemic insults. In this study we aim to investigate the potential role of Sirtuin 1 (Sirt1), a metabolically-regulated protein deacetylase, in mediating the response of ischemic neurons to regulate vascular regrowth in a mouse model of oxygen-induced ischemic retinopathy (OIR). We found that Sirt1 is highly induced in the avascular ischemic retina in OIR. Conditional depletion of neuronal Sirt1 leads to significantly decreased retinal vascular regeneration into the avascular zone and increased hypoxia-induced pathologic vascular growth. This effect is likely independent of PGC-1α, a known Sirt1 target, as absence of PGC-1α in knockout mice does not impact vascular growth in retinopathy. We found that neuronal Sirt1 controls vascular regrowth in part through modulating deacetylation and stability of hypoxia-induced factor 1α and 2α, and thereby modulating expression of angiogenic factors. These results indicate that ischemic neurons induce Sirt1 to promote revascularization into ischemic neuronal areas, suggesting a novel role of neuronal Sirt1 in mediating vascular regeneration in ischemic conditions, with potential implications beyond retinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Antonetti DA et al (2012) Diabetic retinopathy. N Engl J Med 366:1227–1239

    Article  PubMed  CAS  Google Scholar 

  2. Sapieha P (2012) Eyeing central neurons in vascular growth and reparative angiogenesis. Blood 120:2182–2194

    Article  PubMed  CAS  Google Scholar 

  3. Akula JD et al (2008) The neurovascular relation in oxygen-induced retinopathy. Mol Vis 14:2499–2508

    PubMed  CAS  Google Scholar 

  4. Sapieha P et al (2008) The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nat Med 14:1067–1076

    Article  PubMed  CAS  Google Scholar 

  5. Fukushima Y et al (2011) Sema3E-PlexinD1 signaling selectively suppresses disoriented angiogenesis in ischemic retinopathy in mice. J Clin Invest 121:1974–1985

    Article  PubMed  CAS  Google Scholar 

  6. Joyal JS et al (2011) Ischemic neurons prevent vascular regeneration of neural tissue by secreting semaphorin 3A. Blood 117:6024–6035

    Article  PubMed  CAS  Google Scholar 

  7. Guarente L (2011) Franklin H. Epstein Lecture: Sirtuins, aging, and medicine. N Engl J Med 364:2235–2244

    Article  PubMed  CAS  Google Scholar 

  8. Brunet A et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015

    Article  PubMed  CAS  Google Scholar 

  9. Donmez G et al (2010) SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 142:320–332

    Article  PubMed  CAS  Google Scholar 

  10. Jiang M et al (2012) Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med 18:153–158

    Article  CAS  Google Scholar 

  11. Michan S et al (2010) SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci 30:9695–9707

    Article  PubMed  CAS  Google Scholar 

  12. Potente M et al (2007) SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev 21:2644–2658

    Article  PubMed  CAS  Google Scholar 

  13. Guarani V et al (2011) Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473:234–238

    Article  PubMed  CAS  Google Scholar 

  14. Smith LE et al (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35:101–111

    PubMed  CAS  Google Scholar 

  15. Chen J, Smith L (2007) Retinopathy of prematurity. Angiogenesis 10:133–140

    Article  PubMed  Google Scholar 

  16. Cheng HL et al (2003) Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 100:10794–10799

    Article  PubMed  CAS  Google Scholar 

  17. Banin E et al (2006) T2-TrpRS inhibits preretinal neovascularization and enhances physiological vascular regrowth in OIR as assessed by a new method of quantification. Invest Ophthalmol Vis Sci 47:2125–2134

    Article  PubMed  Google Scholar 

  18. Connor KM et al (2009) Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat Protoc 4:1565–1573

    Article  PubMed  CAS  Google Scholar 

  19. Stahl A et al (2009) Computer-aided quantification of retinal neovascularization. Angiogenesis 12:297–301

    Article  PubMed  CAS  Google Scholar 

  20. Frassetto LJ et al (2006) Kinase-dependent differentiation of a retinal ganglion cell precursor. Invest Ophthalmol Vis Sci 47:427–438

    Article  PubMed  Google Scholar 

  21. Sapieha P et al (2011) 5-Lipoxygenase metabolite 4-HDHA is a mediator of the antiangiogenic effect of {omega}-3 polyunsaturated fatty acids. Sci Transl Med 3:69ra12

    Article  PubMed  Google Scholar 

  22. Stahl A et al (2010) The mouse retina as an angiogenesis model. Invest Ophthalmol Vis Sci 51:2813–2826

    Article  PubMed  Google Scholar 

  23. Lagouge M et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122

    Article  PubMed  CAS  Google Scholar 

  24. Rodgers JT et al (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118

    Article  PubMed  CAS  Google Scholar 

  25. Arany Z et al (2008) HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 451:1008–1012

    Article  PubMed  CAS  Google Scholar 

  26. Saint-Geniez M et al. (2012) PGC-1alpha regulates normal and pathological angiogenesis in the Retina. Am J Pathol

  27. Lin J et al (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119:121–135

    Article  PubMed  CAS  Google Scholar 

  28. Stahl A et al (2010) Postnatal weight gain modifies severity and functional outcome of oxygen-induced proliferative retinopathy. Am J Pathol 177:2715–2723

    Article  PubMed  Google Scholar 

  29. Aiello LP et al (1995) Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci USA 92:10457–10461

    Article  PubMed  CAS  Google Scholar 

  30. Chen J et al (2008) Erythropoietin deficiency decreases vascular stability in mice. J Clin Invest 118:526–533

    PubMed  CAS  Google Scholar 

  31. Kataoka K et al (2011) The roles of vitreal macrophages and circulating leukocytes in retinal neovascularization. Invest Ophthalmol Vis Sci 52:1431–1438

    Article  PubMed  CAS  Google Scholar 

  32. Ishida S et al (2003) Leukocytes mediate retinal vascular remodeling during development and vaso-obliteration in disease. Nat Med 9:781–788

    Article  PubMed  CAS  Google Scholar 

  33. Dioum EM et al (2009) Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science 324:1289–1293

    Article  PubMed  CAS  Google Scholar 

  34. Laemmle A et al (2012) Inhibition of SIRT1 impairs the accumulation and transcriptional activity of HIF-1alpha protein under hypoxic conditions. PLoS ONE 7:e33433

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Molly R. Seaward, Keirnan L. Willett, Roberta J. Dennison, Nathan M. Krah for their technical assistance. This work was supported by Charles H. Hood Foundation, Boston Children’s Hospital (BCH) Ophthalmology Foundation, BCH Manton Center for Orphan Disease Research, Blind Childrens Center, BrightFocus Foundation, Mass Lions Eye Research Fund Inc. and BCH Career Development Award (to JC), NIH (EY017017, EY022275, PO1 HD18655), V. Kann Rasmussen Foundation, RPB Senior Investigator Award, Alcon Research Institute Award, and the Lowy Medical Research Instiute (LEHS). AS is supported by the Freifrau von Nauendorff Foundation and the German Ophthalmic Society. DAS is supported by the Paul F. Glenn Foundation, NIH (RO1AG019719), JDRF, and the United Mitochondrial Disease Foundation. PS holds a Canada Research Chair in Retinal Cell Biology. PS and JSJ are supported by the Canadian Institutes of Health Research. SM is supported by the Consejo Nacional de Ciencia y Tecnología, Mexico (CONACyT 177819).

Conflict of interest

DAS is a consultant to and inventor on patents licensed to GlaxoSmithKline and Ovascience.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Chen or Lois E. H. Smith.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 194 kb)

Supplementary material (PDF 354 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Michan, S., Juan, A.M. et al. Neuronal sirtuin1 mediates retinal vascular regeneration in oxygen-induced ischemic retinopathy. Angiogenesis 16, 985–992 (2013). https://doi.org/10.1007/s10456-013-9374-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9374-5

Keywords

Navigation