Skip to main content
Log in

STAT1 activation by venous malformations mutant Tie2-R849W antagonizes VEGF-A-mediated angiogenic response partly via reduced bFGF production

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

A missense mutation from arginine to tryptophan at residue 849 in the kinase domain of Tie2 (Tie2-R849W) is commonly identified in familial venous malformations. The mechanistic action of Tie2-R849W variant expression on angiogenic cascades including smooth muscle cell recruitment, however, remains elusive. To avoid confounding factors from endogenous Tie2 expression, Tie2-depleted endothelial cells (ECs) were used to study the effects of ectopic shRNA-resistant Tie2 variant expression, Tie2-WT* and Tie2-R849W*, on vascular cell proliferation, migration, tube formation, and smooth muscle cell (SMC) recruitment. Tie2-R849W* induced STAT1 phosphorylation at Tyr701. Tie2-R849W*-expressing cells had reduced ability to migrate and form tubes on Matrigel than their wildtype counterparts. STAT1 phosphorylation attenuated VEGF-A-induced STAT3 tyrosine phosphorylation in Tie2-R849W*-expressing HUVECs. The induced STAT1 activation also decreased VEGF-A-induced bFGF mRNA expression by competing with activated STAT3 for a direct binding to the consensus STAT-binding site at positions −997 to −989 bp from transcription start site in the bFGF promoter. Depleting STAT1 expression rescued the inability of Tie2-R849W expression to mediate angiogenesis. Moreover, bFGF neutralization or constitutive STAT1 activation, reminiscence of Tie2-R849W* expression, suppressed the smooth muscle cell recruiting ability of endothelial conditioned medium. This work reveals an anti-angiogenic role of STAT1 activation that acts in Tie2-R849W-expressing ECs to impair VEGF-A-mediated STAT3 signaling, bFGF production, and smooth muscle cell recruitment. A balancing activity of STAT1 and STAT3 may be important for Tie2-mediated vascular homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Breier G (2000) Angiogenesis in embryonic development–a review. Placenta 21(Suppl A):S11–S15. doi:10.1053/plac.1999.0525

  2. Costa C, Soares R, Schmitt F (2004) Angiogenesis: now and then. APMIS 112(7–8):402–412. doi:10.1111/j.1600-0463.2004.apm11207-0802.x

    Article  PubMed  Google Scholar 

  3. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factor and blood vessel formation. Nature 407:242–248. doi:10.1038/35025215

    Article  PubMed  CAS  Google Scholar 

  4. Suzuki Y, Komi Y, Ashino H, Yamashita J, Inoue J, Yoshiki A, Eichmann A, Amanuma H, Kojima S (2004) Retinoic acid controls blood vessel formation by modulating endothelial and mural cell interaction via suppression of Tie2 signaling in vascular progenitor cells. Blood 104(1):166–169. doi:10.1182/blood-2003-09-3293

    Article  PubMed  CAS  Google Scholar 

  5. Ward NL, Dumont DJ (2002) The angiopoietins and Tie2/Tek: adding to the complexity of cardiovascular development. Semin Cell Dev Biol 13(1):19–27. doi:10.1006/scdb.2001.0288

    Article  PubMed  CAS  Google Scholar 

  6. Fujikawa K, de Aos ScherpenseelI, Jain SK, Presman E, Christensen RA, Varticovski L (1999) Role of PI 3-kinase in angiopoietin-1-mediated migration and attachment-dependent survival of endothelial cells. Exp Cell Res 253(2):663–672. doi:10.1006/excr.1999.4693

    Article  PubMed  CAS  Google Scholar 

  7. Papapetropoulos A, Fulton D, Mahboubi K, Kalb RG, O’Connor DS, Li F, Altieri DC, Sessa WC (2000) Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem 275(13):9102–9105. doi: 10.1074/jbc.275.13.9102

    Article  PubMed  CAS  Google Scholar 

  8. Conway EM, Collen D, Carmeliet P (2001) Molecular mechanisms of blood vessel growth. Cardiovasc Res 49(3):507–521. doi: 10.1016/S0008-6363(00)00281-9

    Article  PubMed  CAS  Google Scholar 

  9. Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376(6535):70–74. doi: 10.1038/376070a0

    Article  PubMed  CAS  Google Scholar 

  10. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87(7):1171–1180. doi: 10.1016/S0092-8674(00)81813-9

    Article  PubMed  CAS  Google Scholar 

  11. Loughna S, Sato TN (2001) Angiopoietin and Tie signaling pathways in vascular development. Matrix Biol 20(5–6):319–325. doi: 10.1016/S0945-053X(01)00149-4

    Article  PubMed  CAS  Google Scholar 

  12. Vikkula M, Boon LM, Carraway KL III, Calvert JT, Diamonti AJ, Goumnerov B, Pasyk KA, Marchuk DA, Warman ML, Cantley LC, Mulliken JB, Olsen BR (1996) Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell 87(7):1181–1190. doi: 10.1016/S0092-8674(00)81814-0

    Article  PubMed  CAS  Google Scholar 

  13. Limaye N, Wouters V, Uebelhoer M, Tuominen M, Wirkkala R, Mulliken JB, Eklund L, Boon LM, Vikkula M (2009) Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations. Nat Genet 41(1):118–124. doi:10.1038/ng.272

    Article  PubMed  CAS  Google Scholar 

  14. Wouters V, Limaye N, Uebelhoer M, Irrthum A, Boon LM, Mulliken JB, Enjolras O, Baselga E, Berg J, Dompmartin A, Ivarsson SA, Kangesu L, Lacassie Y, Murphy J, Teebi AS, Penington A, Rieu P, Vikkula M (2010) Hereditary cutaneomucosal venous malformations are caused by TIE2 mutations with widely variable hyper-phosphorylating effects. Eur J Hum Genet 18(4):414–420. doi:10.1038/ejhg.2009.193

    Article  PubMed  CAS  Google Scholar 

  15. Morris PN, Dunmore BJ, Tadros A, Marchuk DA, Darland DC, D’Amore PA, Brindle NP (2005) Functional analysis of a mutant form of the receptor tyrosine kinase Tie2 causing venous malformations. J Mol Med 83(1):58–63. doi:10.1007/s00109-004-0601-9

    Article  PubMed  CAS  Google Scholar 

  16. Morris PN, Dunmore BJ, Brindle NP (2006) Mutant Tie2 causing venous malformation signals through Shc. Biochem Biophys Res Commun 346(1):335–338. doi:10.1016/j.bbrc.2006.05.128

    Article  PubMed  CAS  Google Scholar 

  17. Korpelainen EI, Karkkainen M, Gunji Y, Vikkula M, Alitalo K (1999) Endothelial receptor tyrosine kinases activate the STAT signaling pathway: mutant Tie-2 causing venous malformations signals a distinct STAT activation response. Oncogene 18(1):1–8. doi:10.1038/sj.onc.1202288

    Article  PubMed  CAS  Google Scholar 

  18. Hu HT, Huang YH, Chang YA, Lee CK, Jiang MJ, Wu LW (2008) Tie2-R849W mutant in venous malformations chronically activates a functional STAT1 to modulate gene expression. J Invest Dermatol 128(9):2325–2333. doi:10.1038/jid.2008.89

    Article  PubMed  CAS  Google Scholar 

  19. Wincewicz A, Sulkowska M, Rutkowski R, Sulkowski S, Musiatowicz B, Hirnle T, Famulski W, Koda M, Sokol G, Szarejko P (2007) STAT1 and STAT3 as intracellular regulators of vascular remodeling. Eur J Intern Med 18(4):267–271. doi:10.1016/j.ejim.2006.12.007

    Article  PubMed  CAS  Google Scholar 

  20. Huang S, Bucana CD, Van Arsdall M, Fidler IJ (2002) STAT1 negatively regulates angiogenesis, tumorigenicity and metastasis of tumor cells. Oncogene 21(16):2504–2512. doi:10.1038/sj.onc.1205341

    Article  PubMed  CAS  Google Scholar 

  21. Kim JY, Bae YH, Bae MK, Kim SR, Park HJ, Wee HJ, Bae SK (2009) Visfatin through STAT3 activation enhances IL-6 expression that promotes endothelial angiogenesis. Biochim Biophys Acta 1793(11):1759–1767. doi:10.1016/j.bbamcr.2009.09.006

    Article  PubMed  CAS  Google Scholar 

  22. Brantley EC, Nabors LB, Gillespie GY, Choi YH, Palmer CA, Harrison K, Roarty K, Benveniste EN (2008) Loss of protein inhibitors of activated STAT-3 expression in glioblastoma multiforme tumors: implications for STAT-3 activation and gene expression. Clin Cancer Res 14(15):4694–4704. doi:10.1158/1078-0432.CCR-08-0618

    Article  PubMed  CAS  Google Scholar 

  23. Niu G, Wright KL, Huang M, Song L, Haura E, Turkson J, Zhang S, Wang T, Sinibaldi D, Coppola D, Heller R, Ellis LM, Karras J, Bromberg J, Pardoll D, Jove R, Yu H (2002) Constitutive STAT3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21(13):2000–2008. doi:10.1038/sj.onc.1205260

    Article  PubMed  CAS  Google Scholar 

  24. Xie TX, Huang FJ, Aldape KD, Kang SH, Liu M, Gershenwald JE, Xie K, Sawaya R, Huang S (2006) Activation of STAT3 in human melanoma promotes brain metastasis. Cancer Res 66(6):3188–3196. doi:10.1158/0008-5472.CAN-05-2674

    Article  PubMed  CAS  Google Scholar 

  25. Jih YJ, Lien WH, Tsai WC, Yang GW, Li C, Wu LW (2001) Distinct regulation of genes by bFGF and VEGF-A in endothelial cells. Angiogenesis 4:313–321. doi: 10.1023/A:1016080321956

    Google Scholar 

  26. Leik CE, Willey A, Graham MF, Walsh SW (2004) Isolation and culture of arterial smooth muscle cells from human placenta. Hypertension 43(4):837–840. doi:10.1161/01.HYP.0000119191.33112.9c

    Article  PubMed  CAS  Google Scholar 

  27. Sironi JJ, Ouchi T (2004) STAT1-induced apoptosis is mediated by caspases 2, 3, and 7. J Biol Chem 279(6):4066–4074. doi:10.1074/jbc.M307774200

    Article  PubMed  CAS  Google Scholar 

  28. Zhang Q, Wang HY, Woetmann A, Raghunath PN, Odum N, Wasik MA (2006) STAT3 induces transcription of the DNA methyltransferase 1 gene (DNMT1) in malignant T lymphocytes. Blood 108(3):1058–1064. doi:10.1182/blood-2005-08-007377

    Article  PubMed  CAS  Google Scholar 

  29. Hayes AJ, Huang WQ, Mallah J, Yang D, Lippman ME, Li LY (1999) Angiopoietin-1 and its receptor Tie-2 participate in the regulation of capillary-like tubule formation and survival of endothelial cells. Microvasc Res 58(3):224–237. doi: 10.1006/mvre.1999.2179

    Article  PubMed  CAS  Google Scholar 

  30. Bogdanovic E, Nguyen VP, Dumont DJ (2006) Activation of Tie2 by angiopoietin-1 and angiopoietin-2 results in their release and receptor internalization. J Cell Sci 119(Pt 17):3551–3560. doi:10.1242/jcs.03077

    Article  PubMed  CAS  Google Scholar 

  31. Coultas L, Chawengsaksophak K, Rossant J (2005) Endothelial cells and VEGF in vascular development. Nature 438(7070):937–945. doi:10.1038/nature04479

    Article  PubMed  CAS  Google Scholar 

  32. Yahata Y, Shirakata Y, Tokumaru S, Yamasaki K, Sayama K, Hanakawa Y, Detmar M, Hashimoto K (2003) Nuclear translocation of phosphorylated STAT3 is essential for vascular endothelial growth factor-induced human dermal microvascular endothelial cell migration and tube formation. J Biol Chem 278(41):40026–40031. doi:10.1074/jbc.M301866200

    Article  PubMed  CAS  Google Scholar 

  33. Chen Z, Han ZC (2008) STAT3: a critical transcription activator in angiogenesis. Med Res Rev 28(2):185–200. doi:10.1002/med.20101

    Article  PubMed  CAS  Google Scholar 

  34. Wen Z, Zhong Z, Darnell JE Jr (1995) Maximal activation of transcription by STAT1 and STAT3 requires both tyrosine and serine phosphorylation. Cell 82(2):241–250. doi:10.1016/0092-8674(95)90311-9

    Article  PubMed  CAS  Google Scholar 

  35. Battle TE, Lynch RA, Frank DA (2006) Signal transducer and activator of transcription 1 activation in endothelial cells is a negative regulator of angiogenesis. Cancer Res 66(7):3649–3657. doi:10.1158/0008-5472.CAN-05-3612

    Article  PubMed  CAS  Google Scholar 

  36. Yeh HH, Lai WW, Chen HH, Liu HS, Su WC (2006) Autocrine IL-6-induced STAT3 activation contributes to the pathogenesis of lung adenocarcinoma and malignant pleural effusion. Oncogene 25(31):4300–4309. doi:10.1038/sj.onc.1209464

    Article  PubMed  CAS  Google Scholar 

  37. Pine R, Canova A, Schindler C (1994) Tyrosine phosphorylated p91 binds to a single element in the ISGF2/IRF-1 promoter to mediate induction by IFN alpha and IFN gamma, and is likely to autoregulate the p91 gene. EMBO J 13(1):158–167

    PubMed  CAS  Google Scholar 

  38. Schroder K, Helmcke I, Palfi K, Krause KH, Busse R, Brandes RP (2007) Nox1 mediates basic fibroblast growth factor-induced migration of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 27(8):1736–1743. doi:10.1161/ATVBAHA.107.142117

    Article  PubMed  Google Scholar 

  39. Findley CM, Cudmore MJ, Ahmed A, Kontos CD (2007) VEGF induces Tie2 shedding via a phosphoinositide 3-kinase/Akt dependent pathway to modulate Tie2 signaling. Arterioscler Thromb Vasc Biol 27(12):2619–2626. doi:10.1161/ATVBAHA.107.150482

    Article  PubMed  CAS  Google Scholar 

  40. Singh H, Hansen TM, Patel N, Brindle NP (2012) The molecular balance between receptor tyrosine kinases Tie1 and Tie2 is dynamically controlled by VEGF and TNFalpha and regulates angiopoietin signalling. PLoS ONE 7(1):e29319. doi:10.1371/journal.pone.0029319

    Article  PubMed  CAS  Google Scholar 

  41. Harris AL, Reusch P, Barleon B, Hang C, Dobbs N, Marme D (2001) Soluble Tie2 and Flt1 extracellular domains in serum of patients with renal cancer and response to antiangiogenic therapy. Clin Cancer Res 7(7):1992–1997

    PubMed  CAS  Google Scholar 

  42. Stephanou A (2004) Role of STAT-1 and STAT-3 in ischaemia/reperfusion injury. J Cell Mol Med 8(4):519–525. doi: 10.1111/j.1582-4934.2004.tb00476.x

    Article  PubMed  CAS  Google Scholar 

  43. Stephanou A, Latchman DS (2005) Opposing actions of STAT-1 and STAT-3. Growth Factors 23(3):177–182. doi:10.1080/08977190500178745

    Article  PubMed  CAS  Google Scholar 

  44. Qing Y, Stark GR (2004) Alternative activation of STAT1 and STAT3 in response to interferon-gamma. J Biol Chem 279(40):41679–41685. doi:10.1074/jbc.M406413200

    Article  PubMed  CAS  Google Scholar 

  45. Costa-Pereira AP, Tininini S, Strobl B, Alonzi T, Schlaak JF, Is’harc H, Gesualdo I, Newman SJ, Kerr IM, Poli V (2002) Mutational switch of an IL-6 response to an interferon-gamma-like response. Proc Nat Acad Sci USA 99(12):8043–8047. doi:10.1073/pnas.122236099

    Article  PubMed  CAS  Google Scholar 

  46. Dong Y, Lu B, Zhang X, Zhang J, Lai L, Li D, Wu Y, Song Y, Luo J, Pang X, Yi Z, Liu M (2010) Cucurbitacin E, a tetracyclic triterpenes compound from Chinese medicine, inhibits tumor angiogenesis through VEGFR2-mediated Jak2-STAT3 signaling pathway. Carcinogenesis 31(12):2097–2104. doi:10.1093/carcin/bgq167

    Article  PubMed  CAS  Google Scholar 

  47. Calvani M, Rapisarda A, Uranchimeg B, Shoemaker RH, Melillo G (2006) Hypoxic induction of an HIF-1alpha-dependent bFGF autocrine loop drives angiogenesis in human endothelial cells. Blood 107(7):2705–2712. doi:10.1182/blood-2005-09-3541

    Article  PubMed  CAS  Google Scholar 

  48. Megeney LA, Perry RL, LeCouter JE, Rudnicki MA (1996) bFGF and LIF signaling activates STAT3 in proliferating myoblasts. Dev Genet 19(2):139–145. doi:10.1002/(SICI)1520-6408(1996)19:2<139:AID-DVG5>3.0.CO;2-A

    Article  PubMed  CAS  Google Scholar 

  49. Li D, Zhang C, Song F, Lubenec I, Tian Y, Song QH (2009) VEGF regulates FGF-2 and TGF-beta1 expression in injury endothelial cells and mediates smooth muscle cells proliferation and migration. Microvasc Res 77(2):134–142. doi:10.1016/j.mvr.2008.09.007

    Article  PubMed  CAS  Google Scholar 

  50. Cucina A, Borrelli V, Randone B, Coluccia P, Sapienza P, Cavallaro A (2003) Vascular endothelial growth factor increases the migration and proliferation of smooth muscle cells through the mediation of growth factors released by endothelial cells. J Surg Res 109(1):16–23. doi: 10.1016/S0022-4804(02)00042-2

    Article  PubMed  CAS  Google Scholar 

  51. Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9(6):685–693. doi:10.1038/nm0603-685

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Council (98-2320-B-006-034-MY3, 99-2628-B-006-017-MY3, and 100-2325-B006-005) and Department of Health (DOH-101-TD-C-111-003) to Wu LW. A fellowship for establishing centers of excellence for cancer research from Department of Health, Executive Yuan in Taiwan (DOH100-TD-C-111-003) was awarded to Huang YH. All shRNA plasmids were obtained from the National RNAi Core Facility at the Institute of Molecular Biology/Genomic Research Center, Academia Sinica, supported by the National Research Program for Genomic Medicine Grants by National Science Council (NSC 97-B-3112-B-001-016). All the authors state no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Wha Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 225 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YH., Wu, MP., Pan, SC. et al. STAT1 activation by venous malformations mutant Tie2-R849W antagonizes VEGF-A-mediated angiogenic response partly via reduced bFGF production. Angiogenesis 16, 207–222 (2013). https://doi.org/10.1007/s10456-012-9313-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-012-9313-x

Keywords

Navigation