Skip to main content
Log in

Imbalance of circulating endothelial cells and progenitors in idiopathic pulmonary fibrosis

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Background

Fibrogenesis during idiopathic pulmonary fibrosis (IPF) is strongly associated with abnormal vascular remodeling. Respective abundance of circulating endothelial cells (CEC) and endothelial progenitor cells (EPC) might reflect the balance between vascular injury and repair and potentially serve as biomarkers of the disease.

Objectives and Methods

We postulated that CEC and EPC subtypes might be differently modulated in IPF. Sixty-four consecutive patients with newly diagnosed IPF were prospectively enrolled and compared to thirteen healthy volunteers. CEC were counted with immunomagnetic CD146-coated beads; progenitors CD34+45dim/CD34+133+/CD34+KDR+were assessed through flow cytometry and EPC (colony-forming-units-Endothelial Cells, CFU-EC, and endothelial colonies forming cells, ECFC) were quantified by cell culture assays.

Results

IPF patients were characterized by a marked increase in CEC associated to an EPC defect: both CD34+KDR+ cells and CFU-EC were decreased versus controls. Moreover, in IPF subjects with a low diffusing capacity of the lung for carbon monoxide (DLCO) < 40 %, CFU-EC and ECFC were higher compared to those with DLCO > 40 %. Finally, ECFC were negatively correlated with DLCO. During an 18 month follow up, CEC levels increased in patients with exacerbation, including those who died during follow up. Finally, ECFC from patients with exacerbation proliferative potential was strongly increased.

Conclusion

IPF is basically associated with both a vascular injury and a repair defect. This study highlights an adaptative process of EPC mobilization in the most severe forms of IPF, that could reflect enhanced homing to the pulmonary vasculature, which clinical consequences remain to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Noble PW, Albera C, Bradford WZ, Costabel U, Glassberg MK, Kardatzke D, King TE Jr, Lancaster L, Sahn SA, Szwarcberg J, Valeyre D, du Bois RM (2011) Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet 377:1760–1769

    Article  PubMed  CAS  Google Scholar 

  2. Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, Colby TV, Cordier JF, Flaherty KR, Lasky JA, Lynch DA, Ryu JH, Swigris JJ, Wells AU, Ancochea J, Bouros D, Carvalho C, Costabel U, Ebina M, Hansell DM, Johkoh T, Kim DS, King TE Jr, Kondoh Y, Myers J, Muller NL, Nicholson AG, Richeldi L, Selman M, Dudden RF, Griss BS, Protzko SL, Schunemann HJ (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183:788–824

    Article  PubMed  Google Scholar 

  3. Ebina M, Shimizukawa M, Shibata N, Kimura Y, Suzuki T, Endo M, Sasano H, Kondo T, Nukiwa T (2004) Heterogeneous increase in CD34-positive alveolar capillaries in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 169:1203–1208

    Article  PubMed  Google Scholar 

  4. Farkas L, Gauldie J, Voelkel NF, Kolb M (2011) Pulmonary hypertension and idiopathic pulmonary fibrosis: a tale of angiogenesis, apoptosis, and growth factors. Am J Respir Cell Mol Biol 45:1–15

    Article  PubMed  CAS  Google Scholar 

  5. Evrard SM, d’Audigier C, Mauge L, Israel-Biet D, Guerin CL, Bieche I, Kovacic JC, Fischer AM, Gaussem P, Smadja DM (2012) The profibrotic cytokine transforming growth factor-beta1 increases endothelial progenitor cell angiogenic properties. J Thromb Haemost 10:670–679

    Article  PubMed  CAS  Google Scholar 

  6. Antoniou KM, Soufla G, Lymbouridou R, Economidou F, Lasithiotaki I, Manousakis M, Drositis I, Spandidos DA, Siafakas NM (2010) Expression analysis of angiogenic growth factors and biological axis CXCL12/CXCR4 axis in idiopathic pulmonary fibrosis. Connect Tissue Res 51:71–80

    Article  PubMed  CAS  Google Scholar 

  7. Margaritopoulos GA, Antoniou KM, Karagiannis K, Vassalou E, Lasithiotaki I, Lambiri I, Siafakas NM (2010) Investigation of angiogenetic axis Angiopoietin-1 and -2/Tie-2 in fibrotic lung diseases: a bronchoalveolar lavage study. Int J Mol Med 26:919–923

    PubMed  CAS  Google Scholar 

  8. Burdick MD, Murray LA, Keane MP, Xue YY, Zisman DA, Belperio JA, Strieter RM (2005) CXCL11 attenuates bleomycin-induced pulmonary fibrosis via inhibition of vascular remodeling. Am J Respir Crit Care Med 171:261–268

    Article  PubMed  Google Scholar 

  9. Papakosta D, Pitsiou G, Daniil Z, Dimadi M, Stagaki E, Rapti A, Antoniou K, Tzouvelekis A, Kontakiotis T, Tryfon S, Polychronopoulos V, Bouros D (2011) Prevalence of Pulmonary Hypertension in Patients with Idiopathic Pulmonary Fibrosis: Correlation with Physiological Parameters. Lung 189:391–399

    Google Scholar 

  10. Ley B, Collard HR, King TE Jr (2011) Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 183:431–440

    Article  PubMed  Google Scholar 

  11. Fang A, Studer S, Kawut SM, Ahya VN, Lee J, Wille K, Lama V, Ware L, Orens J, Weinacker A, Palmer SM, Crespo M, Lederer DJ, Deutschman CS, Kohl BA, Bellamy S, Demissie E, Christie JD (2011) Elevated pulmonary artery pressure is a risk factor for primary graft dysfunction following lung transplantation for idiopathic pulmonary fibrosis. Chest 139:782–787

    Article  PubMed  Google Scholar 

  12. Yin Q, Nan HY, Zhang WH, Yan LF, Cui GB, Huang XF, Wei JG (2011) Pulmonary microvascular endothelial cells from bleomycin-induced rats promote the transformation and collagen synthesis of fibroblasts. J Cell Physiol 226:2091–2102

    Article  PubMed  CAS  Google Scholar 

  13. Bull TM, Golpon H, Hebbel RP, Solovey A, Cool CD, Tuder RM, Geraci MW, Voelkel NF (2003) Circulating endothelial cells in pulmonary hypertension. Thromb Haemost 90:698–703

    PubMed  CAS  Google Scholar 

  14. Smadja DM, Gaussem P, Mauge L, Israel-Biet D, Dignat-George F, Peyrard S, Agnoletti G, Vouhe PR, Bonnet D, Levy M (2009) Circulating endothelial cells: a new candidate biomarker of irreversible pulmonary hypertension secondary to congenital heart disease. Circulation 119:374–381

    Article  PubMed  Google Scholar 

  15. Smadja DM, Mauge L, Sanchez O, Silvestre JS, Guerin C, Godier A, Henno P, Gaussem P, Israel-Biet D (2010) Distinct patterns of circulating endothelial cells in pulmonary hypertension. Eur Respir J 36:1284–1293

    Article  PubMed  CAS  Google Scholar 

  16. Fadini GP, Avogaro A, Ferraccioli G, Agostini C (2010) Endothelial progenitors in pulmonary hypertension: new pathophysiology and therapeutic implications. Eur Respir J 35:418–425

    Article  PubMed  CAS  Google Scholar 

  17. Duong HT, Erzurum SC, Asosingh K (2011) Pro-angiogenic hematopoietic progenitor cells and endothelial colony-forming cells in pathological angiogenesis of bronchial and pulmonary circulation. Angiogenesis 14:411–422

    Google Scholar 

  18. Huertas A, Palange P (2011) Circulating endothelial progenitor cells and chronic pulmonary diseases. Eur Respir J 37:426–431

    Article  PubMed  CAS  Google Scholar 

  19. Fadini GP, Schiavon M, Cantini M, Baesso I, Facco M, Miorin M, Tassinato M, de Kreutzenberg SV, Avogaro A, Agostini C (2006) Circulating progenitor cells are reduced in patients with severe lung disease. Stem Cells 24:1806–1813

    Article  PubMed  Google Scholar 

  20. Palange P, Testa U, Huertas A, Calabro L, Antonucci R, Petrucci E, Pelosi E, Pasquini L, Satta A, Morici G, Vignola MA, Bonsignore MR (2006) Circulating haemopoietic and endothelial progenitor cells are decreased in COPD. Eur Respir J 27:529–541

    Article  PubMed  CAS  Google Scholar 

  21. Caramori G, Rigolin GM, Mazzoni F, Leprotti S, Campioni P, Papi A (2011) Circulating endothelial stem cells are not decreased in pulmonary emphysema or COPD. Thorax 65:554–555

    Article  Google Scholar 

  22. Fadini GP, Schiavon M, Rea F, Avogaro A, Agostini C (2007) Depletion of endothelial progenitor cells may link pulmonary fibrosis and pulmonary hypertension. Am J Respir Crit Care Med 176:724–725; author reply 725

    Google Scholar 

  23. Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, Oh BH, Lee MM, Park YB (2004) Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 24:288–293

    Article  PubMed  CAS  Google Scholar 

  24. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809

    Article  PubMed  CAS  Google Scholar 

  25. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600

    Article  PubMed  Google Scholar 

  26. Smadja DM, Bieche I, Silvestre JS, Germain S, Cornet A, Laurendeau I, Duong-Van-Huyen JP, Emmerich J, Vidaud M, Aiach M, Gaussem P (2008) Bone morphogenetic proteins 2 and 4 are selectively expressed by late outgrowth endothelial progenitor cells and promote neoangiogenesis. Arterioscler Thromb Vasc Biol 28:2137–2143

    Article  PubMed  CAS  Google Scholar 

  27. Tcherakian C, Cottin V, Brillet PY, Freynet O, Naggara N, Carton Z, Cordier JF, Brauner M, Valeyre D, Nunes H (2011) Progression of idiopathic pulmonary fibrosis: lessons from asymmetrical disease. Thorax 66:226–231

    Article  PubMed  Google Scholar 

  28. Lee SH, Shim HS, Cho SH, Kim SY, Lee SK, Son JY, Jung JY, Kim EY, Lim JE, Lee KJ, Park BH, Kang YA, Kim YS, Kim SK, Chang J, Park MS (2011) Prognostic factors for idiopathic pulmonary fibrosis: clinical, physiologic, pathologic, and molecular aspects. Sarcoidosis Vasc Diffuse Lung Dis 28:102–112

    PubMed  CAS  Google Scholar 

  29. Yoder MC, Ingram DA (2009) The definition of EPCs and other bone marrow cells contributing to neoangiogenesis and tumor growth: is there common ground for understanding the roles of numerous marrow-derived cells in the neoangiogenic process? Biochim Biophys Acta 1796:50–54

    PubMed  CAS  Google Scholar 

  30. Hirschi KK, Ingram DA, Yoder MC (2008) Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol 28:1584–1595

    Article  PubMed  CAS  Google Scholar 

  31. Yoder MC (2010) Is endothelium the origin of endothelial progenitor cells? Arterioscler Thromb Vasc Biol 30:1094–1103

    Article  PubMed  CAS  Google Scholar 

  32. Sutherland DR, Anderson L, Keeney M, Nayar R, Chin-Yee I (1996) The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J Hematother 5:213–226

    Article  PubMed  CAS  Google Scholar 

  33. Smadja DM, Mauge L, Gaussem P, d’Audigier C, Israel-Biet D, Celermajer DS, Bonnet D, Levy M (2011) Treprostinil increases the number and angiogenic potential of endothelial progenitor cells in children with pulmonary hypertension. Angiogenesis 14:17–27

    Article  PubMed  CAS  Google Scholar 

  34. Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760

    Article  PubMed  CAS  Google Scholar 

  35. Smadja DM, Mauge L, Susen S, Bieche I, Gaussem P (2009) Blood outgrowth endothelial cells from cord blood and peripheral blood: angiogenesis-related characteristics in vitro: a rebuttal. J Thromb Haemost 7:504–506; author reply 506–508

    Google Scholar 

  36. Woywodt A, Blann AD, Kirsch T, Erdbruegger U, Banzet N, Haubitz M, Dignat-George F (2006) Isolation and enumeration of circulating endothelial cells by immunomagnetic isolation: proposal of a definition and a consensus protocol. J Thromb Haemost 4:671–677

    Article  PubMed  CAS  Google Scholar 

  37. Yue WS, Wang M, Yan GH, Yiu KH, Yin L, Lee SW, Siu CW, Tse HF (2010) Smoking is associated with depletion of circulating endothelial progenitor cells and elevated pulmonary artery systolic pressure in patients with coronary artery disease. Am J Cardiol 106:1248–1254

    Article  PubMed  Google Scholar 

  38. Fadini GP, Albiero M, Boscaro E, Menegazzo L, Cabrelle A, Piliego T, Federici M, Agostini C, Avogaro A (2010) Rosuvastatin stimulates clonogenic potential and anti-inflammatory properties of endothelial progenitor cells. Cell Biol Int 34:709–715

    Article  PubMed  CAS  Google Scholar 

  39. Renzoni EA, Walsh DA, Salmon M, Wells AU, Sestini P, Nicholson AG, Veeraraghavan S, Bishop AE, Romanska HM, Pantelidis P, Black CM, Du Bois RM (2003) Interstitial vascularity in fibrosing alveolitis. Am J Respir Crit Care Med 167:438–443

    Article  PubMed  Google Scholar 

  40. Evrard SM, d’Audigier C, Mauge L, Israel-Biet D, Guerin CL, Bieche I, Kovacic JC, Fischer AM, Gaussem P, Smadja DM (2012) Profibrotic cytokine TGF-beta1 increases endothelial progenitor cell angiogenic properties. J Thromb Haemost 10:670–679

    Google Scholar 

  41. Boos CJ, Blann AD, Lip GY (2007) Assessment of endothelial damage/dysfunction: a focus on circulating endothelial cells. Methods Mol Med 139:211–224

    Article  PubMed  CAS  Google Scholar 

  42. Yao G, Liu ZH, Zheng C, Zhang X, Chen H, Zeng C, Li LS (2008) Evaluation of renal vascular lesions using circulating endothelial cells in patients with lupus nephritis. Rheumatology (Oxford) 47:432–436

    Article  CAS  Google Scholar 

  43. Widemann A, Sabatier F, Arnaud L, Bonello L, Al-Massarani G, Paganelli F, Poncelet P, Dignat-George F (2008) CD146-based immunomagnetic enrichment followed by multiparameter flow cytometry: a new approach to counting circulating endothelial cells. J Thromb Haemost 6:869–876

    Article  PubMed  CAS  Google Scholar 

  44. Lee KW, Lip GY, Tayebjee M, Foster W, Blann AD (2005) Circulating endothelial cells, von Willebrand factor, interleukin-6, and prognosis in patients with acute coronary syndromes. Blood 105:526–532

    Article  PubMed  CAS  Google Scholar 

  45. Avouac J, Uzan G, Kahan A, Boileau C, Allanore Y (2008) Endothelial progenitor cells and rheumatic disorders. Joint Bone Spine 75:131–137

    Article  PubMed  Google Scholar 

  46. Jodon de Villeroche V, Avouac J, Ponceau A, Ruiz B, Kahan A, Boileau C, Uzan G, Allanore Y (2010) Enhanced late-outgrowth circulating endothelial progenitor cell levels in rheumatoid arthritis and correlation with disease activity. Arthritis Res Ther 12:R27

    Article  PubMed  Google Scholar 

  47. Avouac J, Wipff J, Goldman O, Ruiz B, Couraud PO, Chiocchia G, Kahan A, Boileau C, Uzan G, Allanore Y (2008) Angiogenesis in systemic sclerosis: impaired expression of vascular endothelial growth factor receptor 1 in endothelial progenitor-derived cells under hypoxic conditions. Arthritis Rheum 58:3550–3561

    Article  PubMed  CAS  Google Scholar 

  48. Allanore Y, Batteux F, Avouac J, Assous N, Weill B, Kahan A (2007) Levels of circulating endothelial progenitor cells in systemic sclerosis. Clin Exp Rheumatol 25:60–66

    PubMed  CAS  Google Scholar 

  49. George J, Shmilovich H, Deutsch V, Miller H, Keren G, Roth A (2006) Comparative analysis of methods for assessment of circulating endothelial progenitor cells. Tissue Eng 12:331–335

    Article  PubMed  CAS  Google Scholar 

  50. Smadja DM, Duong-van-Huyen JP, Dal Cortivo L, Blanchard A, Bruneval P, Emmerich J, Gaussem P (2012) Early endothelial progenitor cells in bone marrow are a biomarker of cell therapy success in patients with critical limb ischemia. Cytotherapy 14:232–239

    Article  PubMed  CAS  Google Scholar 

  51. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  52. Ito H, Rovira II, Bloom ML, Takeda K, Ferrans VJ, Quyyumi AA, Finkel T (1999) Endothelial progenitor cells as putative targets for angiostatin. Cancer Res 59:5875–5877

    PubMed  CAS  Google Scholar 

  53. Fadini GP, Losordo D, Dimmeler S (2012) Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res 110:624–637

    Article  PubMed  CAS  Google Scholar 

  54. Siemerink MJ, Klaassen I, Vogels IM, Griffioen AW, Van Noorden CJ, Schlingemann RO (2012) CD34 marks angiogenic tip cells in human vascular endothelial cell cultures. Angiogenesis 15:151–163

    Article  PubMed  CAS  Google Scholar 

  55. Moeller A, Gilpin SE, Ask K, Cox G, Cook D, Gauldie J, Margetts PJ, Farkas L, Dobranowski J, Boylan C, O’Byrne PM, Strieter RM, Kolb M (2009) Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 179:588–594

    Article  PubMed  Google Scholar 

  56. Antoniou KM, Papadaki HA, Soufla G, Kastrinaki MC, Damianaki A, Koutala H, Spandidos DA, Siafakas NM (2010) Investigation of bone marrow mesenchymal stem cells (BM MSCs) involvement in Idiopathic Pulmonary Fibrosis (IPF). Respir Med 104:1535–1542

    Article  PubMed  Google Scholar 

  57. Mund JA, Estes ML, Yoder MC, Ingram DA Jr, Case J (2012) Flow cytometric identification and functional characterization of immature and mature circulating endothelial cells. Arterioscler Thromb Vasc Biol 32:1045–1053

    Article  PubMed  CAS  Google Scholar 

  58. Yamada M, Kubo H, Ishizawa K, Kobayashi S, Shinkawa M, Sasaki H (2005) Increased circulating endothelial progenitor cells in patients with bacterial pneumonia: evidence that bone marrow derived cells contribute to lung repair. Thorax 60:410–413

    Article  PubMed  CAS  Google Scholar 

  59. Toshner M, Voswinckel R, Southwood M, Al-Lamki R, Howard LS, Marchesan D, Yang J, Suntharalingam J, Soon E, Exley A, Stewart S, Hecker M, Zhu Z, Gehling U, Seeger W, Pepke-Zaba J, Morrell NW (2009) Evidence of dysfunction of endothelial progenitors in pulmonary arterial hypertension. Am J Respir Crit Care Med 180:780–787

    Article  PubMed  Google Scholar 

  60. Medici D, Shore EM, Lounev VY, Kaplan FS, Kalluri R, Olsen BR (2010) Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med 16:1400–1406

    Article  PubMed  CAS  Google Scholar 

  61. Moonen JR, Krenning G, Brinker MG, Koerts JA, van Luyn MJ, Harmsen MC (2010) Endothelial progenitor cells give rise to pro-angiogenic smooth muscle-like progeny. Cardiovasc Res 86:506–515

    Article  PubMed  CAS  Google Scholar 

  62. Diez M, Musri MM, Ferrer E, Barbera JA, Peinado VI (2010) Endothelial progenitor cells undergo an endothelial-to-mesenchymal transition-like process mediated by TGFbetaRI. Cardiovasc Res 88:502–511

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank maternity department of Begin hospitals for providing us cord blood. Umbilical cord bloods were collected from consenting mothers. The study was approved by local ethics committee of “Hôpital des Instructions et des Armées de Begin (France) (201008043234797) and protocol conformed to ethical guidelines of Declaration of Helsinki. We received research grants from the Chancellerie des Universités, Paris, France (Leg Poix).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Smadja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smadja, D.M., Mauge, L., Nunes, H. et al. Imbalance of circulating endothelial cells and progenitors in idiopathic pulmonary fibrosis. Angiogenesis 16, 147–157 (2013). https://doi.org/10.1007/s10456-012-9306-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-012-9306-9

Keywords

Navigation