Skip to main content
Log in

Anti-angiogenic effects of purine inhibitors of cyclin dependent kinases

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Small molecular inhibitors of Cyclin dependent kinases (Cdks) are currently being developed as anticancer therapeutics due to their antiproliferative properties. The purine Cdk specific inhibitor (R)-roscovitine (seliciclib, CYC202) represents one of the most promising of these compounds. It is currently evaluated in clinical trials concerning cancer therapy. Recently, we have shown that roscovitine exerts potent antiangiogenic effects and elucidated Cdk5 as a new player in angiogenesis. These findings introduce Cdk5 as novel target for antiangiogenic therapy, and Cdk5 inhibitors as an attractive therapeutic approach. Here, we present the antiangiogenic profile of 15 derivatives of roscovitine in vitro and in vivo and provide structure activity relationships of the roscovitine analogs. The (S)-isomer LGR561 and the respective (R)- and (S)-isomers LGR848 and LGR849 strongly inhibited proliferation and cell cycle progression, induced cell death, and reduced migration of endothelial cells in vitro. In comparison to roscovitine, these compounds showed an increased potency to inhibit Cdk2, Cdk5, Cdk7, and Cdk9. By analyzing the effects of LGR561, LGR848, and LGR849 on endothelial cell tube formation, mouse aortic ring sprouting, angiogenesis in the chick chorioallantoic membrane, and neovessel formation in the mouse cornea, we elucidate the two (S)-isomers LGR561 and LGR849 as highly potent inhibitors of angiogenesis. This study provides first information on how to modify roscovitine to develop Cdk inhibitors with increased antiangiogenic activity and suggests the application of existing and the development of new Cdk inhibitors to inhibit both, cancer cell proliferation and angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Senderowicz AM (2003) Small-molecule cyclin-dependent kinase modulators. Oncogene 22:6609–6620

    Article  PubMed  CAS  Google Scholar 

  2. Senderowicz AM (2004) Targeting cell cycle and apoptosis for the treatment of human malignancies. Curr Opin Cell Biol 16:670–678

    Article  PubMed  CAS  Google Scholar 

  3. Meijer L, Borgne A, Mulner O, Chong JP, Blow JJ, Inagaki N, Inagaki M, Delcros JG, Moulinoux JP (1997) Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 243:527–536

    Article  PubMed  CAS  Google Scholar 

  4. Legraverend M, Ludwig O, Bisagni E, Leclerc S, Meijer L, Giocanti N, Sadri R, Favaudon V (1999) Synthesis and in vitro evaluation of novel 2, 6, 9-trisubstituted purines acting as cyclin-dependent kinase inhibitors. Bioorg Med Chem 7:1281–1293

    Article  PubMed  CAS  Google Scholar 

  5. Krystof V, Lenobel R, Havlicek L, Kuzma M, Strnad M (2002) Synthesis and biological activity of olomoucine II. Bioorg Med Chem Lett 12:3283–3286

    Article  PubMed  CAS  Google Scholar 

  6. Krystof V, McNae IW, Walkinshaw MD, Fischer PM, Muller P, Vojtesek B, Orsag M, Havlicek L, Strnad M (2005) Antiproliferative activity of olomoucine II, a novel 2, 6, 9-trisubstituted purine cyclin-dependent kinase inhibitor. Cell Mol Life Sci 62:1763–1771

    Article  PubMed  CAS  Google Scholar 

  7. Aldoss IT, Tashi T, Ganti AK (2009) Seliciclib in malignancies. Expert Opin Investig Drugs 18:1957–1965

    Article  PubMed  CAS  Google Scholar 

  8. Guzi T (2004) CYC-202 Cyclacel. Curr Opin Investig Drugs 5:1311–1318

    PubMed  CAS  Google Scholar 

  9. Tonini T, Rossi F, Claudio PP (2003) Molecular basis of angiogenesis and cancer. Oncogene 22:6549–6556

    Article  PubMed  CAS  Google Scholar 

  10. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603

    Article  PubMed  CAS  Google Scholar 

  11. Abadi AH, Abou-Seri SM, Abdel-Rahman DE, Klein C, Lozach O, Meijer L (2006) Synthesis of 3-substituted-2-oxoindole analogues and their evaluation as kinase inhibitors, anticancer and antiangiogenic agents. Eur J Med Chem 41:296–305

    Article  PubMed  CAS  Google Scholar 

  12. Maggiorella L, Aubel C, Haton C, Milliat F, Connault E, Opolon P, Deutsch E, Bourhis J (2009) Cooperative effect of roscovitine and irradiation targets angiogenesis and induces vascular destabilization in human breast carcinoma. Cell Prolif 42:38–48

    Article  PubMed  CAS  Google Scholar 

  13. Zahler S, Liebl J, Furst R, Vollmar AM (2010) Anti-angiogenic potential of small molecular inhibitors of cyclin dependent kinases in vitro. Angiogenesis

  14. Liebl J, Weitensteiner SB, Vereb G, Takacs L, Füerst R, Vollmar AM, Zahler S (2010) Cyclin dependent kinase 5 (Cdk5) regulates endothelial cell migration and angiogenesis. J Biol Chem

  15. Havlicek L, Hanus J, Vesely J, Leclerc S, Meijer L, Shaw G, Strnad M (1997) Cytokinin-derived cyclin-dependent kinase inhibitors: synthesis and cdc2 inhibitory activity of olomoucine and related compounds. J Med Chem 40:408–412

    Article  PubMed  CAS  Google Scholar 

  16. Otyepka M, Krystof V, Havlicek L, Siglerova V, Strnad M, Koca J (2000) Docking-based development of purine-like inhibitors of cyclin-dependent kinase-2. J Med Chem 43:2506–2513

    Article  PubMed  CAS  Google Scholar 

  17. Gray NS, Wodicka L, Thunnissen AM, Norman TC, Kwon S, Espinoza FH, Morgan DO, Barnes G, LeClerc S, Meijer L et al (1998) Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 281:533–538

    Article  PubMed  CAS  Google Scholar 

  18. Kiemer AK, Weber NC, Fürst R, Bildner N, Kulhanek-Heinze S, Vollmar AM (2002) Inhibition of p38 MAPK activation via induction of MKP-1: atrial natriuretic peptide reduces TNF-alpha-induced actin polymerization and endothelial permeability. Circ Res 90:874–881

    Article  PubMed  CAS  Google Scholar 

  19. Koltermann A, Liebl J, Fürst R, Ammer H, Vollmar AM, Zahler S (2009) Ginkgo biloba extract EGb 761 exerts anti-angiogenic effects via activation of tyrosine phosphatases. J Cell Mol Med 13:2122–2130

    Article  PubMed  Google Scholar 

  20. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279

    Article  PubMed  CAS  Google Scholar 

  21. Kenyon BM, Voest EE, Chen CC, Flynn E, Folkman J, D’Amato RJ (1996) A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci 37:1625–1632

    PubMed  CAS  Google Scholar 

  22. Licht T, Tsirulnikov L, Reuveni H, Yarnitzky T, Ben-Sasson SA (2003) Induction of pro-angiogenic signaling by a synthetic peptide derived from the second intracellular loop of S1P3 (EDG3). Blood 102:2099–2107

    Article  PubMed  CAS  Google Scholar 

  23. De Azevedo WF, Leclerc S, Meijer L, Havlicek L, Strnad M, Kim SH (1997) Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human cdk2 complexed with roscovitine. Eur J Biochem 243:518–526

    Article  PubMed  Google Scholar 

  24. Bach S, Knockaert M, Reinhardt J, Lozach O, Schmitt S, Baratte B, Koken M, Coburn SP, Tang L, Jiang T et al (2005) Roscovitine targets, protein kinases and pyridoxal kinase. J Biol Chem 280:31208–31219

    Article  PubMed  CAS  Google Scholar 

  25. Menn B, Bach S, Blevins TL, Campbell M, Meijer L, Timsit S (2010) Delayed treatment with systemic (S)-roscovitine provides neuroprotection and inhibits in vivo CDK5 activity increase in animal stroke models. PLoS One 5:e12117

    Article  PubMed  Google Scholar 

  26. Feldmann G, Mishra A, Hong SM, Bisht S, Strock CJ, Ball DW, Goggins M, Maitra A, Nelkin BD (2010) Inhibiting the cyclin-dependent kinase CDK5 blocks pancreatic cancer formation and progression through the suppression of Ras-Ral signaling. Cancer Res 70:4460–4469

    Article  PubMed  CAS  Google Scholar 

  27. Strock CJ, Park JI, Nakakura EK, Bova GS, Isaacs JT, Ball DW, Nelkin BD (2006) Cyclin-dependent kinase 5 activity controls cell motility and metastatic potential of prostate cancer cells. Cancer Res 66:7509–7515

    Article  PubMed  CAS  Google Scholar 

  28. Liu JL, Wang XY, Huang BX, Zhu F, Zhang RG, Wu G (2010) Expression of CDK5/p35 in resected patients with non-small cell lung cancer: relation to prognosis. Med Oncol

  29. Liu J, Zhang DL, Shan SG (2008) Expression and clinical significance of cyclin H and CDK7 in human hemangiomas. Zhonghua Zheng Xing Wai Ke Za Zhi 24:300–302

    PubMed  Google Scholar 

  30. Wagner N, Jehl-Pietri C, Lopez P, Murdaca J, Giordano C, Schwartz C, Gounon P, Hatem SN, Grimaldi P, Wagner KD (2009) Peroxisome proliferator-activated receptor beta stimulation induces rapid cardiac growth and angiogenesis via direct activation of calcineurin. Cardiovasc Res 83:61–71

    Article  PubMed  CAS  Google Scholar 

  31. Ali S, Heathcote DA, Kroll SH, Jogalekar AS, Scheiper B, Patel H, Brackow J, Siwicka A, Fuchter MJ, Periyasamy M et al (2009) The development of a selective cyclin-dependent kinase inhibitor that shows antitumor activity. Cancer Res 69:6208–6215

    Article  PubMed  CAS  Google Scholar 

  32. Fisher RP (2005) Secrets of a double agent: CDK7 in cell-cycle control and transcription. J Cell Sci 118:5171–5180

    Article  PubMed  CAS  Google Scholar 

  33. Pirngruber J, Shchebet A, Johnsen SA (2009) Insights into the function of the human P-TEFb component CDK9 in the regulation of chromatin modifications and co-transcriptional mRNA processing. Cell Cycle 8:3636–3642

    Article  PubMed  CAS  Google Scholar 

  34. Krystof V, Uldrijan S (2010) Cyclin-dependent kinase inhibitors as anticancer drugs. Curr Drug Targets 11:291–302

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank C. Niemann, H. Stöcker, J. Peliskova, and S. Schnegg for their help with the in vitro models. We thank ProQinase (Freiburg, Germany) for performing in vitro Cdk activity assays. The EU-project PROKINASE No 503467 is gratefully acknowledged. M. Strnad and V. Krystof were supported by projects MSM6198959216 and GACR204/08/0511.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Zahler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liebl, J., Krystof, V., Vereb, G. et al. Anti-angiogenic effects of purine inhibitors of cyclin dependent kinases. Angiogenesis 14, 281–291 (2011). https://doi.org/10.1007/s10456-011-9212-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-011-9212-6

Keywords

Navigation