Skip to main content
Log in

Diversity and spatial–temporal distribution of airborne fungi at the world culture heritage site Maijishan Grottoes in China

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

The deposition of the airborne microorganisms onto cultural heritage is associated closely with the subsequent biodeterioration. In this study, a systematic investigation was carried out to detect the seasonal variation and diversity of airborne fungal concentration at the World Cultural Heritage Site Maijishan Grottoes in western China. A bio-aerosol sampler was deployed to collect samples over four seasons in 2016. The culturable airborne fungi were isolated, purified and then identified with the extraction of genomic DNA, PCR amplification of ITS rRNA region, sequencing, and phylogenetic analysis. The concentrations of culturable fungi ranged from 216 to 1389 CFU/m3, which varied seasonally with significant differences among the sampling sites. Fifteen different fungal genera were confirmed, among them, Cladosporium was the most predominant fungal genus, followed by Penicillium. The fungal community structure and their relationship with environmental factors were also delineated. The spatial–temporal differences of airborne fungi at Maijishan Grottoes were mainly due to height, rainfall, relative humidity, and temperature. The dominant genera Cladosporium and Penicillium may pose potential threats to the ancient painted sculptures and murals, and monitoring of the airborne fungi at such a heritage site could provide supporting data for the pre-warning and control of fungal outbreaks inside the caves for better management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrusci, C., Martín-González, A., Del Amo, A., Catalina, F., Collado, J., & Platas, G. (2005). Isolation and identification of bacteria and fungi from cinematographic films. International Biodeterioration & Biodegradation, 56(1), 58–68.

    Article  CAS  Google Scholar 

  • Balocco, C., Petrone, G., & Cammarata, G. (2014). Numerical multi-physical approach for the assessment of coupled heat and moisture transfer combined with people movements in historical buildings. Build Simulation, 7, 289–303.

    Article  Google Scholar 

  • Bastian, F., Jurado, V., Nováková, A., Alabouvette, C., & Sáiz-Jiménez, C. (2010). The microbiology of Lascaux Cave. Microbiology, 156(3), 644–652.

    Article  CAS  Google Scholar 

  • Bonazza, A., De Nuntiis, P., Mandrioli, P., & Sabbioni, C. (2016). Aerosol impact on cultural heritage: Deterioration processes and strategies for preventive conservation. Wiley-VCH Verlag GmbH & Co.

    Google Scholar 

  • Brodie, E. L., DeSantis, T. Z., Parker, J. P. M., Zubietta, I. X., Piceno, Y. M., & Andersen, G. L. (2007). Urban aerosols harbor diverse and dynamic bacterial populations. Proceedings of the National Academy of Sciences of the United States of America, 104(1), 299–304.

    Article  CAS  Google Scholar 

  • Caneva, G., De Nuntiis, P., Fornaciari, M., Ruga, L., Valenti, P., & Pasquariello, G. (2020). Aerobiology applied to the preventive conservation of cultural heritage. Aerobiologia, 36(1), 99–103.

    Article  Google Scholar 

  • Carlo, E. D., Chisesi, R., Barresi, G., Barbaro, S., Lombardo, G., Rotolo, V., Sebastianelli, M., Travagliato, G., & Palla, F. (2016). Fungi and bacteria in indoor cultural heritage environments: microbial related risks for artworks and human health. Environment and Ecology Research, 4(5), 257–264.

    Article  CAS  Google Scholar 

  • Chang, C., Liang, T., & Yang, L. (2015). Microbial air contamination in an intensive care unit. International Journal Public Health, 4(3), 145–151.

    Google Scholar 

  • Docampo, S., Trigo, M. M., Recio, M., Melgar, M., García-Sánchez, J., & Cabezudo, B. (2011). Fungal spore content of the atmosphere of the Cave of Nerja (southern Spain): Diversity and origin. Science of the Total Environment, 409(4), 835–843.

    Article  CAS  Google Scholar 

  • Duan, Y., Wu, F., Wang, W., Gu, J. D., Li, Y., Feng, H., Chen, T., Liu, G., & An, L. (2018). Differences of microbial community on the wall paintings preserved in situ and ex situ of the Tiantishan Grottoes, China. International Biodeterioration & Biodegradation, 132, 102–113.

    Article  Google Scholar 

  • Duan, Y., Wu, F., Wang, W., He, D., Gu, J. D., Feng, H., Chen, T., Liu, G., & An, L. (2017). The microbial community characteristics of ancient painted sculptures in Maijishan Grottoes, China. PLoS ONE, 12(67), e0179718.

    Article  CAS  Google Scholar 

  • Duan, Y., Wu, F., Wang, W., He, D., Gu, J. D., Feng, H., Chen, T., Liu, G., & An, L. (2019). Spatial and temporal distribution characteristics of the airborne bacteria in the Maijishan grottoes, China. Acta Microbiologica Sinica, 59(1), 145–156.

    Google Scholar 

  • Dupont, J., Jacquet, C., Dennetiere, B., Lacoste, S., Bousta, F., Orial, G., Cruaud, C., Couloux, A., & Roquebert, M. F. (2007). Invasion of the French paleolithic painted cave of Lascaux by members of the Fusarium solani species complex. Mycologia, 99(4), 526–533.

    Article  CAS  Google Scholar 

  • EJ, W. F., Wang, W. F., Chen, G. L., Zhao, L. Y., & He, D. P. (2013). Monitoring and research on microbes in the environment of the wall paintings in No. 5 of the Wei and Jin Tombs. Dunhuang Research, 6, 109–116.

    Google Scholar 

  • Fang, Z. G., Sun, P., Ouyang, Z. Y., Liu, P., Sun, L., & Wang, X. Y. (2013). Studies on the size distribution of airborne microbes at home in Beijing. Environmental Science, 34(7), 2526–2532.

    Google Scholar 

  • Fernandez-Cortes, A., Cuezva, S., Sanchez-Moral, S., Cañaveras, J. C., Porca, E., Jurado, V., Martin-Sanchez, P. M., & Saiz-Jimenez, C. (2011). Detection of human-induced environmental disturbances in a show cave. Environmental Science & Pollution Research, 18(6), 1037–1045.

    Article  CAS  Google Scholar 

  • Gaüzère, C., Moletta-Denat, M., Blanquart, H., Ferreira, S., Moularat, S., Godon, J. J., & Robine, E. (2014). Stability of airborne microbes in the Louvre Museum over time. Indoor Air, 24(1), 29–40.

    Article  CAS  Google Scholar 

  • Godoi, R. H. M., Potgieter-Vermaak, S., Godoi, A. F. L., Stranger, M., & Van Grieken, R. (2008). Assessment of aerosol particles within the Rubens’ House Museum in Antwerp, Belgium. X-Ray Spectrometry, 37(4), 298–303.

    Article  CAS  Google Scholar 

  • Gohli, J., Bøifot, K. O., Moen, L. V., Pastuszek, P., Skogan, G., Udekwu, K. I., & Dybwad, M. (2019). The subway microbiome: seasonal dynamics and direct comparison of air and surface bacterial communities. Microbiome, 7, 160.

    Article  Google Scholar 

  • Gu, J. (2003). Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. International Biodeterioration & Biodegradation, 52(2), 69–91.

    Article  CAS  Google Scholar 

  • Hayleeyesus, S. F., & Manaye, A. M. (2014). Microbiological quality of indoor air in university libraries. Asian Pacific Journal of Tropical Biomedicine, 4(1), 312–317.

    Article  Google Scholar 

  • Huang, C. Y., Lee, C. C., Li, F. C., Ma, Y. P., & Su, H. J. J. (2002). The seasonal distribution of bioaerosols in municipal landfill sites: a 3-yr study. Atmospheric Environment, 36(27), 4385–4395.

    Article  CAS  Google Scholar 

  • Jones, A. M., & Harrison, R. M. (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations-a review. Science of the Total Environment, 326(1–3), 151–180.

    Article  CAS  Google Scholar 

  • Jurado, V., Fernandez-Cortes, A., Cuezva, S., Laiz, L., Cañaveras, J. C., Sanchez-Moral, S., & Saiz-Jimenez, C. (2009). The fungal colonisation of rock-art caves: Experimental evidence. Science of Nature, 96(9), 1027–1034.

    Article  CAS  Google Scholar 

  • Kathiriya, T., Gupta, A., & Singh, N. K. (2021). An opinion review on sampling strategies, enumeration techniques, and critical environmental factors for bioaerosols: An emerging sustainability indicator for society and cities. Environmental Technology & Innovation, 21, 101287.

    Article  CAS  Google Scholar 

  • Kowalski, M., & Pastuszka, J. S. (2017). Effect of ambient air temperature and solar radiation on changes in bacterial and fungal aerosols concentration in the urban environment. Annals of Agricultural and Environmental Medicine, 25(2), 259–261.

    Article  CAS  Google Scholar 

  • Lee, S. H., Lee, H. J., Kim, S. J., Lee, H. M., Kang, H., & Kim, Y. P. (2010). Identification of airborne bacterial and fungal community structures in an urban area by T-RFLP analysis and quantitative real-time PCR. Science of the Total Environment, 408(6), 1349–1357.

    Article  CAS  Google Scholar 

  • Leplat, J., François, A., Touron, S., Galant, P., & Bousta, F. (2019). Aerobiological behavior of Paleolithic decorated caves: a comparative study of five caves in the Gard department (France). Aerobiologia, 35, 105–124.

    Article  Google Scholar 

  • Lymperopoulou, D. S., Adams, R. I., & Lindow, S. E. (2016). Contribution of vegetation to the microbial composition of nearby outdoor air. Applied and Environmental Microbiology, 82(13), 3822–3833.

    Article  CAS  Google Scholar 

  • Ma, Y., Zhang, H., Du, Y., Tian, T., Xiang, T., Liu, X., Wu, F., An, L., Wang, W., Gu, J. D., & Feng, H. (2015). The community distribution of bacteria and fungi on ancient wall paintings of the Mogao Grottoes. Scientific Reports, 5, 7752.

    Article  CAS  Google Scholar 

  • Maron, P. A., Mougel, C., Lejon, D. P., Carvalho, E., Bizet, K., Marck, G., Cubito, N., Lemanceau, P., & Ranjard, L. (2006). Temporal variability of airborne bacterial community structure in an urban area. Atmospheric Environment, 40(40), 8074–8080.

    Article  CAS  Google Scholar 

  • Meng, H., Katayama, Y., & Gu, J. (2017). More wide occurrence and dominance of ammonia-oxidizing archaea than bacteria at three Angkor sandstone temples of Bayon, Phnom Krom and Wat Athvea in Cambodia. International Biodeterioration & Biodegradation, 117, 78–88.

    Article  CAS  Google Scholar 

  • Nugari, M. P., Realini, M., & Roccardi, A. (1993). Contamination of mural paintings by indoor airborne fungal spores. Aerobiologia, 9(2), 131–139.

    Article  Google Scholar 

  • Porca, E., Jurado, V., Martin-Sanchez, P. M., Hermosin, B., Bastian, F., Alabouvette, C., & Saiz-Jimenez, C. (2011). Aerobiology: An ecological indicator for early detection and control of fungal outbreaks in caves. Ecological Indicators, 11(6), 1594–1598.

    Article  Google Scholar 

  • Portillo, M. C., Saiz-Jimenez, C., & Gonzalez, J. M. (2009). Molecular characterization of total and metabolically active bacterial communities of “white colonizations” in the Altamira Cave, Spain. Research in Microbiology, 160(1), 41–47.

    Article  CAS  Google Scholar 

  • Pusz, W., Ogórek, R., Knapik, R., Kozak, B., & Bujak, H. (2015). The occurrence of fungi in the recently discovered Jarkowicka Cave in the Karkonosze Mts. (Poland). Geomicrobiology Journal, 32(1), 59–67.

    Article  Google Scholar 

  • Pyrri, I., Tripyla, E., Zalachori, A., Chrysopoulou, M., Parmakelis, A., & Kapsanaki-Gotsi, E. (2020). Fungal contaminants of indoor air in the National Library of Greece. Aerobiologia, 36, 387–400.

    Article  Google Scholar 

  • Saiz-Jimenez, C., Cuezva, S., Jurado, V., Fernandez-Cortes, A., Porca, E., Benavente, D., Cañaveras, J. C., & Sanchez-Moral, S. (2011). Paleolithic art in peril: Policy and science collide at Altamira Cave. Science, 334(6052), 42–43.

    Article  CAS  Google Scholar 

  • Sanchez-Moral, S., Luque, L., Cuezva, S., Soler, V., Benavente, D., Laiz, L., Gonzalez, J. M., & Sáiz-Jiménez, C. (2005). Deterioration of building materials in Roman catacombs: The influence of visitors. Science of the Total Environment, 349(1–3), 260–276.

    Article  CAS  Google Scholar 

  • Savković, Ž, Stupar, M., Unković, N., Ivanović, Ž, Blagojević, J., Vukojević, J., & Grbić, M. L. (2019). In vitro biodegradation potential of airborne Aspergilli and Penicillia. Science of Nature, 106, 8.

    Article  CAS  Google Scholar 

  • Schabereiter-Gurtner, C., Piñar, G., Lubitz, W., & Rölleke, S. (2001). An advanced molecular strategy to identify bacterial communities on art objects. Journal of Microbiological Methods, 45(2), 77–87.

    Article  CAS  Google Scholar 

  • Schabereiter-Gurtner, C., Saiz-Jimenez, C., Piñar, G., Lubitz, W., & Rölleke, S. (2002). Phylogenetic 16S rRNA analysis reveals the presence of complex and partly unknown bacterial communities in Tito Bustillo cave, Spain, and on its Palaeolithic paintings. Environmental Microbiology, 4(7), 392–400.

    Article  CAS  Google Scholar 

  • Schabereiter-Gurtner, C., Saiz-Jimenez, C., Piñar, G., Lubitz, W., & Rölleke, S. (2004). Phylogenetic diversity of bacteria associated with Paleolithic paintings and surrounding rock walls in two Spanish caves (Llonín and La Garma). FEMS Microbiology Ecology, 47(2), 235–247.

    Article  CAS  Google Scholar 

  • Shirakawa, M. A., Beech, I. B., Tapper, R., Cincotto, M. A., & Gambale, W. (2003). The development of a method to evaluate bioreceptivity of indoor mortar plastering to fungal growth. International Biodeterioration & Biodegradation, 51(2), 83–92.

    Article  Google Scholar 

  • Spirin, V. F., & Mikhaĭlova, N. A. (1991). Microbial contamination of air at the swine-breeding farms. Gigiena I Sanitariia, 5, 34–36.

    Google Scholar 

  • Sterflinger, K., & Piñar, G. (2013). Microbial deterioration of cultural heritage and works of art—Tilting at windmills? Applied Microbiology & Biotechnology, 97(22), 9637–9646.

    Article  CAS  Google Scholar 

  • Tanaka, D., Terada, Y., Nakashima, T., Sakatoku, A., & Nakamura, S. (2015). Seasonal variations in airborne bacterial community structures at a suburban site of central Japan over a 1-year time period using PCR-DGGE method. Aerobiologia, 31(2), 143–157.

    Article  Google Scholar 

  • Vanderwolf, K. J., Malloch, D., McAlpine, D. F., & Forbes, G. J. (2013). A world review of fungi, yeasts, and slime molds in caves. International Journal of Speleology, 42(1), 77–96.

    Article  Google Scholar 

  • Wang, W., Ma, X., Ma, Y., Mao, L., Wu, F., Ma, X., An, L., & Feng, H. (2010a). Seasonal dynamics of airborne fungi in different caves of the Mogao Grottoes, Dunhuang, China. International Biodeterioration & Biodegradation, 64(6), 461–466.

    Article  Google Scholar 

  • Wang, W., Ma, Y., Ma, X., Wu, F., Ma, X., An, L., & Feng, H. (2010b). Seasonal variations of airborne bacteria in the Mogao Grottoes, Dunhuang, China. International Biodeterioration & Biodegradation, 64(4), 309–315.

    Article  CAS  Google Scholar 

  • White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: A guide to methods and applications (pp. 315–322). New York: Academic Press.

    Google Scholar 

  • Zhang, G., Gong, C., Gu, J., Katayama, Y., Someya, T., & Gu, J. D. (2019). Biochemical reactions and mechanisms involved in the biodeterioration of stone world cultural heritage under the tropical climate conditions. International Biodeterioration & Biodegradation, 143, 104723.

    Article  CAS  Google Scholar 

  • Zhang, G. B., Xue, P., Hou, W. F., & Guo, Q. L. (2005). The study on micro-environment of the cave affected by the visitors of the Mogao Grottoes. Dunhuang Research, 4, 83–86.

    Google Scholar 

  • Zhou, Z., Liu, Y., Lloyd, K. G., Pan, J., Yang, Y., Gu, J. D., & Li, M. (2019). Genomic and transcriptomic insights into the ecology and metabolism of benthic archaeal cosmopolitan, Thermoprofundales (MBG-D archaea). The ISME Journal, 13(4), 885–901.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 32060258, 32060277); Science and Technology Plan of Gansu Province (No. 18JR3RA004, 20YF8WF016); Project of Gansu Cultural Relics Bureau (No. GWJ202011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanfu Wang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest in this study.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors of this investigation.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Wu, F., He, D. et al. Diversity and spatial–temporal distribution of airborne fungi at the world culture heritage site Maijishan Grottoes in China. Aerobiologia 37, 681–694 (2021). https://doi.org/10.1007/s10453-021-09713-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-021-09713-8

Keywords

Navigation