Skip to main content
Log in

Influence of thermal requirement in the aerobiological and phenological behavior of two grapevine varieties

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Knowledge about the timing of the aerobiological and phenological processes in plants with economic interest results of great agronomical importance, mainly for the establishment of the adaptive capacity of different varieties to various environmental conditions and the optimization of cultural practices. An agrometeorological study in two authorized varieties (Treixadura and Godello) of the Designation of Origin Ribeiro (North-western Spain) was conducted during the years 2008–2011. As consequence of the studied area bioclimatic conditions, the grapevine cycle exceed than 190 days and the varieties cultivated are considered as “late varieties.” The presence of Vitis pollen grains in the vineyard atmosphere was mainly registered during the stages 5 (inflorescence emerge) and 6 (flowering) which benefit a successful fertilization process. The variations in airborne pollen concentrations are related to temperature and humidity. Phenological models proposed in this paper offer a high accuracy as the standard deviation of error between estimated and observed values was low. The prediction variability ranges around 2 phenological scales in 2008 and 1 phenological scale in 2009, 2010 and 2011. These results indicate that the models developed to predict the phenology, in terms of degree days accumulated (GDD) using as a threshold temperature 10 °C, can be a useful tool to forecast the successive phenological events in the Designation of Origin Ribeiro area. During the stage 8 (ripening of berries), the GDD and the Brix Index were particularly correlated, so far as the differences between plants of the same variety are minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beniston, M. (2008). Sustainability of the landscape of a UNESCO World Heritage Site in the Lake Geneva region (Switzerland) in a greenhouse climate. International Journal of Climatology, 28, 1519–1524.

    Article  Google Scholar 

  • Blanco-Ward, D., García, J. M., & Jones, G. V. (2007). Spatial climate variability and vitivulture in the Miño River Valley of Spain. Vitis, 46(2), 63–70.

    Google Scholar 

  • Butrosse, M. S. (1969). Fruitfulness in grapevines effects of light intensity and temperature. Botanical Gazette, 130, 166–173.

    Article  Google Scholar 

  • Camps, J. O., & Ramos, M. C. (2011). Grape harvest and yield responses to inter-annual changes in temperature and precipitation in an area of north-east Spain with a Mediterranean climate. International Journal of Biometeorology,. doi:10.1007/s00484-011-0489-3.

    Google Scholar 

  • Caprio, J. M., & Quamme, H. A. (2002). Weather conditions associated with grape production in the Okanagan Valley of British Columbia and potential impact of climate change. Canadian Journal of Plant Science, 82(4), 755–763.

    Article  Google Scholar 

  • Chuine, I. (2004). Grape ripening as a past climate indicator. Nature, 432, 289–290.

    Article  CAS  Google Scholar 

  • Coombe, B. G. (1995). Growth stages of the grapevine. Australian Journal of Grape and Wine Research, 1, 100–110.

    Article  Google Scholar 

  • Cour, P., & Van Campo, M. (1980). Prévisions de récolte partir de l’analyse du contenu pollinique de l’atmosphere. Acad. Sci. París.

  • Cristofolini, F., & Gottardini, E. (2000). Concentration of airborne pollen of Vitis vinifera L. and yield forecast: a case study at S. Michele all’Adige, Trento, Italy. Aerobiologia, 16, 125–129.

    Article  Google Scholar 

  • Cunha, M. (2002). Previsão de colheitas em viticultura. Integração de modelos aeropolinicos e bioclimáticos. PhD thesis. Portugal: Faculdade de Ciências da Universidade do Porto.

  • Dalla Marta, A., Grifoni, D., Mancini, M., Storchi, P., Zipoli, G., & Orlandini, S. (2010). Analysis of the relationships between climate variability and grapevine phenology in the Nobile di Montepulciano wine production area. Journal of Agricultural Science, 148, 657–666.

    Article  Google Scholar 

  • Eichhorn, K. W., & Lorenz, H. (1977). Phaenologische Entwicklunstadien der Rebe. Nachrichtenblatt des Deutchen Pflanzenschutzdienstes (Braunschweig), 29, 119–120.

    Google Scholar 

  • Fernández-González, M., Rodríguez-Rajo, F. J., Aira, M. J., & Jato, V. (2007). Fenología de la variedad Treixadura cultivada en la Denominación de Origen Ribeiro (Ourense-España) durante el año 2008. Polen, 17, 23–38.

    Google Scholar 

  • Galán Soldevilla, C., Cariñanos González, P., Alcázar Teno, P., & Domínguez Vilches, E. (2007). Spanish Aerobiology Network (REA): Management and quality manual. Córdoba: University of Córdoba Publication Service.

    Google Scholar 

  • García de Cortázar-Atauri, I., Brisson, N., & Gaudillere, J. P. (2009). Performance of several models for predicting budbrust date of grapevine (Vitis vinifera L.). International Journal of Biometeorology, 53, 317–326.

    Article  Google Scholar 

  • Gil, G. (1999). El potencial productivo. Crecimiento vegetativo y diseño de huertos y viñedos (p. 342). Santiago: Universidad Católica de Chile.

  • Hilaire, D., Rotach, M. W., & Clot, B. (2012). Building models for daily pollen concentrations. Aerobiologia,. doi:10.1007/s10453-012-9252-4.

    Google Scholar 

  • Huglin, P., & Schneider, C. (1998). Biologie et écologie de la vigne (p. 370). France: Lavoisier.

    Google Scholar 

  • Jones, G. V. (2005). Climate change in the western United States grape growing regions. In 7th international symposium on grapevine physiology and biotechnology, 689. (pp. 71–80). California: Davis.

  • Jones, G. V., & Davis, R. E. (2000). Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. American Journal of Enology and Viticulture, 51, 249–261.

    Google Scholar 

  • Jones, G. V., White, M. A., Cooper, O. R., & Storchmann, K. (2005). Climate change and global wine quality. Climate Change, 73, 319–343.

    Article  Google Scholar 

  • Kelen, M., & Dermitas, I. (2003). Pollen viability, germination capability and pollen production level of some grape varieties (Vitis vinifera L.). Acta Physiologiae Plantarum, 25, 229–233.

    Article  Google Scholar 

  • Kishino, A. Y., & Marur, I. P. H. (2007). Factores climáticos e o desenvolvimento da videira. In A. Y. Kishino, et al. (Eds.), Viticultura tropical (pp. 59–86). Londrina: IAPAR.

    Google Scholar 

  • Laget, F., Tondut, J. L., Deloire, A., & Kelly, M. T. (2008). Climate trends in a specific mediterranean viticultural area between 1950 and 2006. Journal International des Sciences de la Vigne et du Vin, 42(3), 113–123.

    Google Scholar 

  • Lebon, G., Duchêne, E., Brun, O., & Clément, C. (2005). Phenology of flowering and starch accumulation in grape (Vitis vinifera L.) Cuttings and Vines. Annals of Botany, 95, 943–948.

    Article  CAS  Google Scholar 

  • Lorenz, D. H., Eichorn, K. W., Bleiholder, H., Klose, R., Meier, U., & Weber, E. (1994). Phänologische Entwicklungsstadien der Weinrebe (Vitis vinifera L. ssp. vinifera). Codierung und Beschreibung nach der erweiterten BBCH-Skala. Viticulture and Enology Science, 49, 66–70.

    Google Scholar 

  • Mandelli, F., Tinetto, J., Camargo, U. A., & Czermainski, A. B. C. (2004). Fenologia e necessidades térmicas da videira na Serra Gaúcha. In Congresso Brasileiro de Fruticultura, 18, Florianópolis.

  • Mc Intyre, G. N., Lider, L. A., & Ferrari, N. L. (1982). The chronological classification of grapevine phenology. American Journal of Enology and Viticulture, 33(2), 80–85.

    Google Scholar 

  • Meier, U. (2001). Growth stages of mono and dicotyledonous plants. 158 pp. BBCH Monograph. 2nd Edit. Federal Biological Research Centre for Agriculture and Forestry.

  • Meier, N. (2007). Grape harvest records as a Proxy for Swiss April to August Temperature reconstruction. Tesis. Germany: University of Bern.

  • Mullins, M. G., Bouquet, A., & Williams, L. E. (1992). Biology of the grapevine (p. 241). New York: Cambridge University Press.

    Google Scholar 

  • Muñoz-Rodríguez, A., Tormo, R., & Silva, M. I. (2011). Pollination dynamics in Vitis vinifera L. American Journal of Enology and Viticulture, 62, 113–117.

    Article  Google Scholar 

  • Nemani, R. R., White, M. A., Cayan, D. R., Jones, G. V., Urng, S. W., Coughlan, J. C., et al. (2001). Asymmetric warming over coastal California and its impact on the premium wine industry. Climate Research, 19, 25–34.

    Article  Google Scholar 

  • Nendel, C. (2010). Grapevine bud break prediction for cool winter climates. International Journal of Biometeorology, 54, 231–241.

    Article  Google Scholar 

  • Oliveira, M. (1998). Calculation of budbreak and flowering base temperatures for Vitis vinifera cv. Touriga Francesa in the Douro Region of Portugal. American Journal of Enology and Viticulture, 49, 74–78.

    Google Scholar 

  • Orriols, I., Vázquez, I., & Losada, A. (2006). Variedades gallegas. Terruños, 16, 11–18.

    Google Scholar 

  • Ortega-Farías, S., Lozano, P., Moreno, Y., & León, L. (2002). Desarrollo de modelos predictivos de fenología y evolución de madurez en vid para vino cv. Cavernet Sauvignon y Chardonnay. Agricultura técnica, 62(1), 27–37.

    Article  Google Scholar 

  • Pedro Júnior, M. S., & Sentelhas, P. C. (2003). Clima e produçao. In C. V. Pomer (Ed.), Uva: tecnologia de produçao, póscolheita, mercado (p. 778). Porto Alegre: Cinco continentes.

    Google Scholar 

  • Petrie, P. R., & Sadras, V. O. (2008). Advancement of grapevine maturity in Australia between 1993 and 2006: putative causes, magnitude of trends and viticulture consequences. Australian Journal of Grape and Wine Research, 14(1), 33–45.

    Article  Google Scholar 

  • Pezzopane, J. R., Pedro Júnior, M. J., Camargo, M. B. P., & Fazuoli, L. C. (2005). Temperatura-base em graus-dia com correçao pela disponibilidade hídrica para o cafeeiro Mundo Novo no período de florescemento-colheita. In Congresso Brasileiro de Agrometeorologia (pp. 9–10). 18–21 de Julio de 2005.

  • Piña, S., & Bautista, D. (2004). Ciclo fenológico de cultivares de vid (Vitis vinifera L.) para mesa en condiciones tropicales. Bioagro, 16(1), 9–15.

    Google Scholar 

  • Ribeiro, H., Abreu, I., Cunha, M., Mota, T., & Castro, R. (2005). Aeropalinological study of Vitis vinifera in the Braga region (1999–2003). Aerobiologia, 21, 131–138.

    Article  Google Scholar 

  • Ribeiro, H., Cunha, M., & Abreu, I. (2003). Airborne pollen concentration inthe region of Braga, Portugal, and its relationship with meteorological parameters. Aerobiologia, 19, 21–27.

    Article  Google Scholar 

  • Ring, D. R., Harris, M. K., Jackman, J. A., & Henson, J. L. (1983). A Fortran computer program for determining start date and base temperature for degree-day models. The Texas Agricultural Experiment Station Bull MP-1537, College Station, Texas: The Texas University System.

  • Roberto, S. R., Sato, A. J., Brenner, A. A., Santos, C. E., & Genta, W. (2004). Fenologia e soma térmica (graus-dia) para a videira ‘Isabel’ (Vitis labrusca) cultivada no Noroeste do Paraná. Semina, 25, 273–280.

    Google Scholar 

  • Rodríguez-Rajo, F. J., Frenguelli, G., & Jato, V. (2003). The influence of air temperature on the starting date of Quercus pollination in the South of Europe. Grana, 42, 145–152.

    Article  Google Scholar 

  • Santos, C. E., Roberto, R. S., Sato, A. J., & Jubileu, B. S. (2007). Caracterizaçao da fenologia e da demenda térmica das videiras “Cabernet Sauvignon” e “Tannat” para a regiao norte do Paraná. Acta Scientiarum Agronomy, 29(3), 361–366.

    Google Scholar 

  • Sato, A. J., Jubileu, B. S., Marinho de Asis, A., & Roberto, S. R. (2011). Phenology production and must compounds of “Cabernet Saugvignon” and “Tanat” grapevines in subtropical climate. Revista Brasileira de Fruticultura, 33(2), 491–499.

    Article  Google Scholar 

  • Sato, A. J., Silva, B. J., Santos, C. E., Santos, R., Carielo, M., Guiraud, M. C., et al. (2008). Phenology and thermal demand of “Isabel” and “Rubea” grapevines on different rootstocks in North of Paraná. Semina: Ciencias Agrárias, Londrina, 29(2), 283–292.

    Google Scholar 

  • Staudt, G. (1999). Opening of flowers and time of anthesis in grapevines, Vitis vinifera L. Vitis, 38, 15–20.

    Google Scholar 

  • Thornley, J., & Jonson, I. (1990). Plant and crop modelling (p. 669). New York: Oxford University Press.

    Google Scholar 

  • Vasconcelos, M. C., Greven, M., Winefield, C. S., Trought, M. C. T., & Raw, V. (2009). The flowering process of Vitis vinifera: A review. American Journal of Enology and Viticulture, 60, 411–434.

    CAS  Google Scholar 

  • Wielgolaski, F. E. (1999). Starting dates and basic temperatures in phenological observations of plants. International Journal of Biometeorology, 42, 158–168.

    Article  Google Scholar 

  • Williams, D. W., Andris, H. L., Beede, R. H., Luvisi, D. A., Norton, M. V. K., & Williams, L. E. (1985). Validation of a model for the growth and development of the Tompson Seedless grapevine II Phenology. American Journal of Enology and Viticulture, 36, 283–289.

    Google Scholar 

Download references

Acknowledgments

This study was financed by the PGIDIT07PX-IB2000076PR research project sponsored by the Xunta of Galicia and INOU 12-08 K226131H64702 research project sponsored by the University of Vigo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fernández-González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-González, M., Rodríguez-Rajo, F.J., Escuredo, O. et al. Influence of thermal requirement in the aerobiological and phenological behavior of two grapevine varieties. Aerobiologia 29, 523–535 (2013). https://doi.org/10.1007/s10453-013-9302-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-013-9302-6

Keywords

Navigation