Skip to main content

Advertisement

Log in

Building models for daily pollen concentrations

The example of 16 pollen taxa in 14 Swiss monitoring stations

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

We describe a method for constructing prediction models for daily pollen concentrations of several pollen taxa in different measurement sites in Switzerland. The method relies on daily pollen concentration time series that were measured with Hirst samplers. Each prediction is based on the weather conditions observed near the pollen measurement site. For each prediction model, we do model assessment with a test data set spanning several years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arizmendi, C., Sanchez, J., Ramos, N., & Ramos, G. (1993). Time series predictions with neural nets: Application to airborne pollen forecasting. International Journal of Biometeorology, 37(3):139–144.

    Article  Google Scholar 

  • Belmonte, J., & Canela, M. (2002). Modelling aerobiological time series. Application to Urticaceae. Aerobiologia, 18(3):287–295.

    Article  Google Scholar 

  • Belmonte, J., Canela, M., Guardia, R., Guardia, R., Sbai, L., Vendrell, M., et al. (1999). Aerobiological dynamics of the UrticSaceae pollen in Spain, 1992–98. Polen, 10, 79–91.

    Google Scholar 

  • Boyer, W. (1973). Air temperature, heat sums, and pollen shedding phenology of longleaf pine. Ecology, 54(2), 420–426.

    Article  Google Scholar 

  • Breiman, L. (1984). Classification and regression trees. London/Boca Raton, FL: Chapman & Hall/CRC.

    Google Scholar 

  • Bringfelt, B., Engström, I., & Nilsson, S. (1982). An evaluation of some models to predict airborne pollen concentration from meteorological conditions in Stockholm, Sweden. Grana, 21(1), 59–64.

    Article  Google Scholar 

  • Cameron, A., & Windmeijer, F. (1996). R-squared measures for count data regression models with applications to health-care utilization. Journal of Business & Economic Statistics, 14(2), 209–220.

    Google Scholar 

  • Castellano-Méndez, M., Aira, M., Iglesias, I., Jato, V., & González-Manteiga, W. (2005). Artificial neural networks as a useful tool to predict the risk level of betula pollen in the air. International Journal of Biometeorology, 49(5), 310–316.

    Article  Google Scholar 

  • Clot, B. (2001). Airborne birch pollen in Neuchâtel (Switzerland): Onset, peak and daily patterns. Aerobiologia, 17(1), 25–29.

    Article  Google Scholar 

  • Comtois, P., Alcazar, P., & Neron, D. (1999). Pollen counts statistics and its relevance to precision. Aerobiologia, 15(1), 19–28.

    Article  Google Scholar 

  • Comtois, P., & Sherknies, D. (1991). Pollen curves typology. Grana, 30(1), 184–189.

    Article  Google Scholar 

  • Cotos-Yáñez, T., Rodriguez-Rajo, F., & Jato, M. (2004). Short-term prediction of betula airborne pollen concentration in Vigo (NW Spain) using logistic additive models and partially linear models. International Journal of Biometeorology, 48(4), 179–185.

    Article  Google Scholar 

  • Cox, C., & Wathes, C. (1995). Bioaerosols handbook. USA: Lewis publishers.

    Google Scholar 

  • Frenguelli, G., & Bricchi, E. (1998). The use of the pheno-climatic model for forecasting the pollination of some arboreal taxa. Aerobiologia, 14(1), 39–44.

    Article  Google Scholar 

  • Friedman, J. (1984). A variable span smoother. Department of Statistics. Technical report. Stanford, CA: Stanford University.

  • Friedman, J. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19(1), 1–67.

    Article  Google Scholar 

  • Friedman, J. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.

    Article  Google Scholar 

  • Friedman, J. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 367–378.

    Article  Google Scholar 

  • Galán, C., Cariñanos, P., García-Mozo, H., Alcázar, P., & Domínguez-Vilches E. (2001) Model for forecasting Olea europaea L. airborne pollen in South–West Andalusia, Spain. International journal of biometeorology, 45(2), 59–63.

    Article  Google Scholar 

  • Gregory, P. (1961). The microbiology of the atmosphere. London: Leonard Hill.

    Google Scholar 

  • Hirst, J. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39(2), 257–265.

    Article  Google Scholar 

  • Isard, S., & Gage, S. (2001). Flow of life in the atmosphere: An airscape approach to understanding invasive organisms. East Lansing: Michigan State University Press.

    Google Scholar 

  • Kasprzyk, I., & Walanus, A. (2010). Description of the main poaceae pollen season using bi-Gaussian curves, and forecasting methods for the start and peak dates for this type of season in rzeszów and ostrowiec św. (SE Poland). Journal of Environmental Monitoring, 12(4), 906–916.

    Article  CAS  Google Scholar 

  • Makra, L., Juhász, M., Borsos, E., & Béczi, R. (2004). Meteorological variables connected with airborne ragweed pollen in southern Hungary. International Journal of Biometeorology, 49(1), 37–47.

    Article  CAS  Google Scholar 

  • Mandrioli, P., Comtois, P., & Levizzani, V. (1998). Methods in aerobiology. Bologna: Pitagora Editrice.

  • Norris-Hill, J. (1995). The modelling of daily Poaceae pollen concentrations. Grana, 34(3), 182–188.

    Article  Google Scholar 

  • Pauling, A., Rotach, M., Gehrig, R., & Clot, B. (2011). A method to derive vegetation distribution maps for pollen dispersion models using birch as an example. International Journal of Biometeorology, 1–10.

  • Peeters, A., Clot, B., Gehrig, R., et al. (1998). Luftpollengehalt in der schweiz. Zürich, Switzerland: SMA–Schweizerische Meteorologische Anstalt.

  • Peng, R. (2008). A method for visualizing multivariate time series data. Journal of Statistical Software 25(1), 1–17.

    Google Scholar 

  • R Development Core Team (2010). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. ISBN 3-900051-07-0.

  • Ranzi, A., Lauriola, P., Marletto, V., & Zinoni, F. (2003) Forecasting airborne pollen concentrations: Development of local models. Aerobiologia 19(1), 39–45.

    Article  Google Scholar 

  • Ridgeway, G. (2007). gbm: Generalized boosted regression models. R package version 1.6-3.

  • Rodriguez-Rajo, F., Frenguelli, G., & Jato, M. (2003). Effect of air temperature on forecasting the start of the betula pollen season at two contrasting sites in the south of Europe (1995–2001). International Journal of Biometeorology, 47(3), 117–125.

    CAS  Google Scholar 

  • Schwartz, M. (2003). Phenology: An integrative environmental science. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Smith, M., & Emberlin, J. (2006). A 30-day-ahead forecast model for grass pollen in north London, United Kingdom. International Journal of Biometeorology, 50(4), 233–242.

    Article  Google Scholar 

  • Spieksma, F., Corden, J., Detandt, M., Millington, W., Nikkels, H., Nolard, N., et al. (2003). Quantitative trends in annual totals of five common airborne pollen types (betula, quercus, poaceae, urtica, and artemisia), at five pollen-monitoring stations in western Europe. Aerobiologia, 19(3), 171–184.

    Article  Google Scholar 

  • Spieksma, M., Emberlin, J., Hjelmroos, M., Jäger, S., & Leuschner, R. (1995). Atmospheric birch (Betula) pollen in Europe: Trends and fluctuations in annual quantities and the starting dates of the seasons. Grana, 34(1), 51–57.

    Article  Google Scholar 

  • Stach, A., Smith, M., Prieto Baena, J., & Emberlin, J. (2008) Long-term and short-term forecast models for poaceae (grass) pollen in Poznan, Poland, constructed using regression analysis. Environmental and Experimental Botany, 62(3), 323–332.

    Article  Google Scholar 

  • Stark, P., Ryan, L., McDonald, J., & Burge, H. (1997). Using meteorologic data to predict daily ragweed pollen levels. Aerobiologia, 13(3), 177–184.

    Article  Google Scholar 

  • Voukantsis, D., Niska, H., Karatzas, K., Riga, M., Damialis, A., & Vokou, D. (2010). Forecasting daily pollen concentrations using data-driven modeling methods in Thessaloniki, Greece. Atmospheric Environment, 44(39), 5101–5111.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Katrin Zink for helping to improve the readability of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Clot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilaire, D., Rotach, M.W. & Clot, B. Building models for daily pollen concentrations. Aerobiologia 28, 499–513 (2012). https://doi.org/10.1007/s10453-012-9252-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-012-9252-4

Keywords

Navigation