Skip to main content
Log in

Short-term dynamic patterns of bioaerosol generation and displacement in an indoor environment

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

The short-term dynamics and distribution of airborne biological and total particles have been assessed in a large university hallway by particle counting using laser particle counters and impaction air samplers. Particle numbers of four different size ranges were determined every 2 min over several hours. Bioaerosols (culturable bacteria and fungi determined as colony-forming units) were directly collected every 5 min on Petri dishes containing the appropriate growth medium. Results clearly show distinct short-term dynamics of particulate aerosols, of both biological and non-biological origin. These reproducible periodic patterns are closely related to periods when lectures are held in lecture rooms and the intermissions in between when students are present in the hallway. Peaks of airborne culturable bacteria were observed with a periodicity of 1 h. Bioaerosol concentrations follow synchronously the variation in the total number of particles. These highly reproducible temporal dynamics should be considered when monitoring indoor environments to determine air quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abt, E., Suh, H. H., Catalano, P., & Koutrakis, P. (2000). Relative contribution of outdoor and indoor particle sources to indoor concentrations. Environmental Science & Technology, 34, 3579–3587. doi:10.1021/es990348y.

    Article  CAS  Google Scholar 

  • Anonymous. (1993). Biological particles in indoor environments. In European Collaborative Action on Urban Air, Indoor Environment and Human Exposure; Report No. 12 (EUR 14988 EN). Brussels: Commission of the European Communities.

  • Bartlett, K. H., Kennedy, S. M., Brauer, M., van Netten, C., & Dill, B. (2004). Evaluation and determinants of airborne bacterial concentrations in school classrooms. Journal of Occupational and Environmental Hygiene, 1, 639–647. doi:10.1080/15459620490497744.

    Article  Google Scholar 

  • Brandl, H., Bachofen, R., & Bischoff, M. (2005). Generation of bioaerosols during manual mail unpacking and sorting. Journal of Applied Microbiology, 99, 1099–1107. doi:10.1111/j.1365-2672.2005.02700.x.

    Article  CAS  Google Scholar 

  • Branis, M., Rezacova, P., & Domasova, M. (2005). The effect of outdoor air and indoor human activity on mass concentrations of PM10, PM2.5, and PM1 in a classroom. Environmental Research, 99, 143–149. doi:10.1016/j.envres.2004.12.001.

    Article  CAS  Google Scholar 

  • Colbeck, I. (1995). Particle emission from outdoor and indoor sources. In T. Kouimtzis & C. Samara (Eds.), Airborne particulate matter. The handbook of environmental chemistry (Vol. 4D, pp. 1–33). Heidelberg: Springer.

    Google Scholar 

  • Cox, C. S. (1995). Physical aspects of bioaerosol particles. In C. S. Cox & C. M. Wathes (Eds.), Bioaerosol handbook (pp. 15–25). Boca Raton: CRC Press Cox.

    Google Scholar 

  • Dutkiewicz, J., Krysinska-Traczyk, E., Skorska, C., Sitkowska, J., Prazmo, Z., & Urbanowicz, B. (2000). Exposure of agricultural workers to airborne microorganisms and endotoxin handling of various vegetable products. Aerobiologia, 16, 193–198. doi:10.1023/A:1007686910001.

    Article  Google Scholar 

  • Feller, W. (1950). An introduction to the probability theory and its application. New York: Wiley.

    Google Scholar 

  • Fierer, N., Liu, Z., Rodriguez-Hernandez, M., Knight, R., Henn, M., & Hernandez, M. T. (2008). Short-term temporal variability in bacterial and fungal populations. Applied and Environmental Microbiology, 74, 200–207. doi:10.1128/AEM.01467-07.

    Article  CAS  Google Scholar 

  • Green, C. F., Scarpino, P. V., & Gibbs, S. G. (2003). Assessment and modeling of indoor fungal and bacterial bioaerosol concentrations. Aerobiologia, 19, 159–169. doi:10.1023/B:AERO.0000006531.35387.bd.

    Article  Google Scholar 

  • Heikkinen, M. S. A., Hjelmroos-Koski, M. K., Haggblom, M. M., & Macher, J. M. (2005). Bioaerosols. In L. S. Ruzer & N. H. Harley (Eds.), Aerosols handbook (pp. 291–342). Boca Raton: CRC Press.

    Google Scholar 

  • Jaenicke, R. (2005). Abundance of cellular material and proteins in the atmosphere. Science, 308, 73. doi:10.1126/science.1106335.

    Article  CAS  Google Scholar 

  • Johansson, C., Norman, M., & Gidhagen, L. (2007). Spatial and temporal variations of PM10 and particle number concentrations in urban air. Environmental Monitoring and Assessment, 127, 477–487. doi:10.1007/s10661-006-9296-4.

    Article  CAS  Google Scholar 

  • Lighthart, B. (1997). The ecology of bacteria in the alfresco atmosphere. FEMS Microbiology Ecology, 23, 263–274. doi:10.1016/S0168-6496(97)00036-6.

    Article  CAS  Google Scholar 

  • Lighthart, B., & Shaffer, B. T. (1995). Viable bacterial aerosol particle size distributions in the midsummer atmosphere at an isolated location in the high desert chaparral. Aerobiology, 11, 19–25. doi:10.1007/BF02136140.

    Article  Google Scholar 

  • Luoma, M., & Batterman, S. A. (2001). Characterization of particulate emissions from occupant activities in offices. Indoor Air, 11, 35–48. doi:10.1034/j.1600-0668.2001.011001035.x.

    Article  CAS  Google Scholar 

  • Morawska, L., He, C., Hitchins, J., Mengersen, K., & Gilbert, D. (2003). Characteristics of particle number and mass concentrations in residential houses in Brisbane, Australia. Atmospheric Environment, 37, 4195–4203. doi:10.1016/S1352-2310(03)00566-1.

    Article  CAS  Google Scholar 

  • Stetzenbach, L. D., Buttner, M. P., & Cruz, P. (2004). Detection and enumeration of airborne biocontaminants. Current Opinion in Biotechnology, 15, 170–174. doi:10.1016/j.copbio.2004.04.009.

    Article  CAS  Google Scholar 

  • Tyndall, J. (1876). The optical deportment of the atmosphere in relation to the phenomena of putrefaction and infection. Philosophical Transactions of the Royal Society of London, 166, 27–74. doi:10.1098/rstl.1876.0002.

    Article  Google Scholar 

  • Zollinger, M., Krebs, W., & Brandl, H. (2006). Bioaerosol generation during grape stemming and crushing. The Science of the Total Environment, 363, 253–259. doi:10.1016/j.scitotenv.2005.05.025.

    Article  CAS  Google Scholar 

  • Zormann, T., & Jeršek, B. (2008). Assessment ob bioaerosol concentrations in different indoor environments. Indoor and Built Environment, 17, 155–163. doi:10.1177/1420326X08089251.

    Article  Google Scholar 

Download references

Acknowledgments

The technical assistance of Mara Bertschi, Deniz Cinek, Anja Fürer, Stefanie Gossweiler, Olivia Sala, and Angela Wyss (students of the Kantonsschule Zurcher Unterland, Bulach, ZH) is gratefully acknowledged. In addition, we thank Annette Hofmann (Department of Environmental Health and Safety, University of Zurich) for her help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Brandl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandl, H., von Däniken, A., Hitz, C. et al. Short-term dynamic patterns of bioaerosol generation and displacement in an indoor environment. Aerobiologia 24, 203–209 (2008). https://doi.org/10.1007/s10453-008-9099-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-008-9099-x

Keywords

Navigation