Skip to main content
Log in

The effects of turbidity on prey consumption and selection of zooplanktivorous Gasterosteus aculeatus L.

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

It is well documented that reduced visibility caused by elevated turbidity can affect feeding of fish, yet the extent to which selective zooplanktivory is altered in turbid conditions remains ambiguous. In this study, we examined the influence of natural sediment-induced turbidity on the overall prey consumption and selective predation of a common brackish water littoral zooplanktivore, the particulate feeding three-spined stickleback (Gasterosteus aculeatus L.). We hypothesized that the effects of turbidity on prey consumption and prey type selection would be pronounced due to the vision-oriented feeding of this species and that these effects would differ between genders. Using aquarium experiments with three different groups of cladocerans and copepods varying in size and behavior, we studied prey consumption and selectivity of this key planktivore in varying turbidity treatments. Our results indicated significantly decreased total prey consumption in the high turbidity treatments, as well as altered selective feeding on copepods and an enhanced preference for larger cladocerans. We found gender-dependent differences in prey consumption, which are consistent with observations of other visually feeding fish with sexual size dimorphism. We conclude that high turbidity, such as that occurring in shallow coastal areas, may affect selective feeding in vision-oriented zooplanktivores and that these effects may be gender-related.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bell MA, Foster SA (1994) The evolutionary biology of the threespine stickleback. Oxford University Press, USA

    Google Scholar 

  • Benfield MC, Minello TJ (1996) Relative effects of turbidity and light intensity on reactive distance and feeding of an estuarine fish. Environ Biol Fish 46:211–216

    Article  Google Scholar 

  • Boehlert GW, Morgan JB (1985) Turbidity enhances feeding abilities of larval pacific herring, Clupea harengus pallasi. Hydrobiologia 123:161–170

    Article  Google Scholar 

  • Chesson J (1978) Measuring preference in selective predation. Ecology 59:211–215

    Article  Google Scholar 

  • Confer JL, Blades PI (1975) Omnivorous zooplankton and planktivorous fish. Limnol Oceanogr 20:571–579

    Article  Google Scholar 

  • Cronly-Dillon J, Sharma SC (1968) Effect of season and sex on the photopic spectral sensitivity of the three-spined stickleback. J Exp Biol 49:679–687

    PubMed  CAS  Google Scholar 

  • De Robertis A, Ryer CH, Veloza A, Brodeur RD (2003) Differential effects of turbidity on prey consumption of piscivorous and planktivorous fish. Can J Fish Aquat Sci 60:1517–1526

    Article  Google Scholar 

  • Drenner RW, Strickler JR, O’Brien WJ (1978) Capture probability: the role of zooplankter escape in the selective feeding of planktivorous fish. J Fish Res Board Can 35:1370–1373

    Article  Google Scholar 

  • Eggers DM (1977) The nature of prey selection by planktivorous fish. Ecology 58:46–59

    Article  Google Scholar 

  • Eriksson BK, Sieben K, Eklöf J, Ljunggren L, Olsson J, Casini M, Bergström U (2011) Effects of altered offshore food webs on coastal ecosystems emphasize the need for cross-ecosystem management. Ambio 40:786–797

    Article  PubMed  Google Scholar 

  • Estlander S, Nurminen L, Olin M, Vinni M, Immonen S, Rask M, Ruuhijärvi J, Horppila J, Lehtonen H (2010) Diet shifts and food selection of perch Perca fluviatilis and roach Rutilus rutilus in humic lakes of varying water colour. J Fish Biol 77:241–256

    Article  PubMed  CAS  Google Scholar 

  • Estlander S, Horppila J, Olin M, Vinni M, Lehtonen H, Rask M, Nurminen L (2012) Troubled by the humics—effects of water colour and interspecific competition on the feeding efficiency of planktivorous perch. Boreal Environ Res 17:305–312

    Google Scholar 

  • Fontaine P, Gardeur JN, Kestemont P, Georges A (1997) Influence of feeding level on growth, intraspecific weight variability and sexual growth dimorphism of Eurasian perch Perca fluviatilis L. reared in a recirculation system. Aquaculture 157:1–9

    Article  Google Scholar 

  • Gardner MB (1981) Mechanisms of size selectivity by planktivorous fish: a test of hypotheses. Ecology 62:571–578

    Article  Google Scholar 

  • Gophen M, Drenner RW, Vinyard GL (1983) Cichlid stocking and the decline of the Galilee Saint Peter’s fish (Sarotherodon galilaeus) in Lake Kinneret, Israel. Can J Fish Aquat Sci 40:983–986

    Article  Google Scholar 

  • Gregory RS (1993) Effect of turbidity on the predator avoidance behaviour of juvenile Chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci 50:241–246

    Article  Google Scholar 

  • Hangelin C, Vuorinen I (1988) Food selection in juvenile three-spined sticklebacks studied in relation to size, abundance and biomass of prey. Hydrobiologia 157:169–177

    Article  Google Scholar 

  • Hayes JW, Rutledge MJ (1991) Relationship between turbidity and fish diets in Lakes Waahi and Whangape, New Zealand. N Z J Mar Fresh 25:297–304

    Article  Google Scholar 

  • Hemmings CC (1966) Factors influencing the visibility of objects underwater. In: Bainbridge R, Evans GC, Rackham O (eds) Light as an ecological factor. Blackwell Scientific Publications, Oxford, pp 359–374

    Google Scholar 

  • Holtby LB, Healey MC (1990) Sex-specific life history tactics and risk taking in Coho salmon. Ecology 71:678–690

    Article  Google Scholar 

  • Horppila J, Nurminen L (2003) Effects of submerged macrophytes on sediment resuspension and internal phosphorus loading in Lake Hiidenvesi (southern Finland). Water Res 37:4468–4474

    Article  PubMed  CAS  Google Scholar 

  • Horppila J, Nurminen L (2005) Effects of different macrophyte growth forms on sediment and P resuspension in a shallow lake. Hydrobiologia 545:167–175

    Article  CAS  Google Scholar 

  • Horppila J, Olin M, Vinni M, Estlander S, Nurminen L, Rask M, Ruuhijärvi J, Lehtonen H (2010) Perch production in forest lakes: the contribution of abiotic and biotic factors. Ecol Freshw Fish 19:257–266

    Article  Google Scholar 

  • Horppila J, Estlander S, Olin M, Pihlajamäki J, Vinni M, Nurminen L (2011) Gender-dependent effects of water quality and conspecific density on the feeding rate of fish—factors behind sexual growth dimorphism. Oikos 120:855–861

    Article  Google Scholar 

  • Jurvelius J, Leinikki J, Mamylov V, Pushkin S (1996) Stock assessment of pelagic three-spined stickleback (Gasterosteus aculeatus): a simultaneous up and down-looking echo-sounding study. Fish Res 27:227–241

    Article  Google Scholar 

  • Kiørboe T, Saiz E, Visser A (1999) Hydrodynamic signal perception in the copepod Acartia tonsa. Mar Ecol Prog Ser 179:97–111

    Article  Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Kitano J, Mori S, Peichel CL (2007) Sexual dimorphism in the external morphology of the threespine stickleback (Gasterosteus aculeatus). Copeia 2:336–349

    Article  Google Scholar 

  • Kohler CC, Ney JJ (1982) A comparison of methods for quantitative analysis of feeding selection of fishes. Environ Biol Fish 7:363–368

    Article  Google Scholar 

  • Lazzaro X (1987) A review of planktivorous fishes: their evolution, feeding behaviours, selectivities, and impacts. Hydrobiologia 146:97–167

    Article  Google Scholar 

  • Lehtiniemi M, Engström-Öst J, Viitasalo M (2005) Turbidity decreases anti-predator behaviour in pike larvae, Esox lucius. Environ Biol Fish 73:1–8

    Article  Google Scholar 

  • Lemmetyinen R, Mankki J (1975) The three-spined stickleback (Gasterosteus aculeatus) in the food chains of the northern Baltic. Merentutkimuslaitoksen Julk Havsforskningsinst Skr 239:155–161

    Google Scholar 

  • Ljunggren L, Sandström A, Bergström U, Mattila J, Lappalainen A, Johansson G, Sundblad G, Casini M, Kaljuste O, Eriksson BK (2010) Recruitment failure of coastal predatory fish in the Baltic Sea coincident with an offshore ecosystem regime shift. ICES J Mar Sci 67:1587–1595

    Article  Google Scholar 

  • Lythgoe JN (1979) The ecology of vision. Clarendon Press, Oxford

    Google Scholar 

  • Magnhagen C (1986) Activity differences influencing food selection in the marine fish Pomatoschistus microps. Can J Fish Aquat Sci 43:223–226

    Article  Google Scholar 

  • Mikheev VN, Wanzenböck J, Pasternak AF (2004) An interplay between foraging and antipredator behavior in 0 + perch (Perca fluviatilis) at the demersal phase. In: Barry TP, Malison JA (eds) Proceedings of Percis III: the third international percid fish symposium, pp 81–82

  • Miner JG, Stein RA (1993) Interactive influence of turbidity and light on larval bluegill (Lepomis macrochirus) foraging. Can J Fish Aquat Sci 50:781–788

    Article  Google Scholar 

  • Nassal B, Burghard W, Maier G (1998) Predation by juvenile roach on the calanoid copepod Eudiaptomus gracilis and the cyclopoid copepod Cyclops vicinus: a laboratory investigation with mixed and single prey. Aquat Ecol 32:335–340

    Article  Google Scholar 

  • Nurminen L, Horppila J (2006) Efficiency of fish feeding on plant-attached prey: effects of inorganic turbidity and plant-mediated changes in the light environment. Limnol Oceanogr 51:1550–1555

    Article  Google Scholar 

  • Nurminen L, Pekcan-Hekim Z, Repka S, Horppila J (2010a) Effect of prey type and inorganic turbidity on littoral predator-prey interactions in a shallow lake: an experimental approach. Hydrobiologia 646:209–214

    Article  CAS  Google Scholar 

  • Nurminen L, Pekcan-Hekim Z, Horppila J (2010b) Feeding efficiency of planktivorous perch (Perca fluviatilis) and roach (Rutilus rutilus) in varying turbidity: an individual-based approach. J Fish Biol 76:1848–1855

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe TC, Brewer MC, Dodson SI (1998) Swimming behavior of daphnia: its role in determining predation risk. J Plankton Res 20:973–984

    Article  Google Scholar 

  • Pekcan-Hekim Z, Lappalainen J (2006) Effects of clay turbidity and density of pikeperch (Sander lucioperca) larvae on predation by perch (Perca fluviatilis). Naturwissenschaften 93:356–359

    Article  PubMed  CAS  Google Scholar 

  • Quesenberry N, Allen P, Cech J Jr (2007) The influence of turbidity on three-spined stickleback foraging. J Fish Biol 70:965–972

    Article  Google Scholar 

  • Radke RJ, Gaupisch A (2005) Effects of phytoplankton-induced turbidity on predation success of piscivorous Eurasian perch (Perca fluviatilis): possible implications for fish community structure in lakes. Naturwissenschaften 92:91–94

    Article  PubMed  CAS  Google Scholar 

  • Reiriz L, Nicieza A, Brañta F (1998) Prey selection by experienced and naive juvenile Atlantic salmon. J Fish Biol 53:100–114

    Article  Google Scholar 

  • Rennie MD, Purchase CF, Lester N, Collins NC, Shuter BJ, Abrams PA (2008) Lazy males? Bioenergetic differences in energy acquisition and metabolism help to explain sexual size dimorphism in percids. J Anim Ecol 77:916–926

    Article  PubMed  Google Scholar 

  • Rowe DK, Dean TL (1998) Effects of turbidity on the feeding ability of the juvenile migrant stage of six New Zealand freshwater fish species. N Z J Mar Fresh 32:21–29

    Article  Google Scholar 

  • Rowe DK, Dean TL, Williams E, Smith JP (2003) Effects of turbidity on the ability of juvenile rainbow trout, Oncorhynchus mykiss, to feed on limnetic and benthic prey in laboratory tanks. N Z J Mar Fresh 37:45–52

    Article  Google Scholar 

  • Salonen M, Engström-Öst J (2010) Prey capture of pike Esox lucius larvae in turbid water. J Fish Biol 76:2591–2596

    Article  PubMed  CAS  Google Scholar 

  • Sanden P, Hakansson B (1996) Long-term trends in secchi depth in the Baltic Sea. Limnol Oceanogr 41:346–351

    Article  Google Scholar 

  • Shine R (1989) Ecological causes for the evolution of sexual dimorphism: a review of the evidence. Q Rev Biol 64:419–461

    Article  PubMed  CAS  Google Scholar 

  • Smith C, Wootton R (1999) Parental energy expenditure of the male three-spined stickleback. J Fish Biol 54:1132–1136

    Article  Google Scholar 

  • Sundell J (1994) Dynamics and composition of littoral fish fauna along the coast of SW-Finland. Aqua Fennica 24:37–49

    Google Scholar 

  • Utne-Palm A (2002) Visual feeding of fish in a turbid environment: physical and behavioural aspects. Mar Freshw Behav Physiol 35:111–128

    Article  Google Scholar 

  • Viitasalo M, Flinkman J, Viherluoto M (2001) Zooplanktivory in the Baltic Sea: a comparison of prey selectivity by Clupea harengus and Mysis mixta, with reference to prey escape reactions. Mar Ecol Prog Ser 216:191–200

    Article  Google Scholar 

  • Vinyard GL, O’brien WJ (1976) Effects of light and turbidity on the reactive distance of bluegill (Lepomis macrochirus). J Fish Res Board Can 33:2845–2849

    Article  Google Scholar 

  • Vinyard GL, Yuan AC (1996) Effects of turbidity on feeding rates of Lahontan cutthroat trout (Oncorhynchus clarki henshawi) and Lahontan redside shiner (Richardsonius egregius). West North Am Nat 56:157–161

    Google Scholar 

  • Webster M, Atton N, Ward A, Hart P (2007) Turbidity and foraging rate in threespine sticklebacks: the importance of visual and chemical prey cues. Behaviour 144:1347–1360

    Article  Google Scholar 

  • Wong CK (1996) Response of copepods to hydromechanical stimuli. Crustaceana 69:853–859

    Article  Google Scholar 

  • Wootton RJ (1976) The biology of the sticklebacks. Academic Press, London

    Google Scholar 

  • Wootton RJ (1984) A functional biology of sticklebacks. University of California Press, Berkeley

    Book  Google Scholar 

Download references

Acknowledgments

We wish to thank the staff at Tvärminne Zoological Station for providing excellent laboratory facilities and equipment, and R Vidal and Y Vatageot for valuable assistance. Walter and Andrée de Nottbeck Foundation (LH and JB) and Victoriastiftelsen (JB) are acknowledged for financial support. This study complies with current Finnish laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura K. Helenius.

Additional information

Handling Editor: Thomas Mehner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helenius, L.K., Borg, J.P.G., Nurminen, L. et al. The effects of turbidity on prey consumption and selection of zooplanktivorous Gasterosteus aculeatus L.. Aquat Ecol 47, 349–356 (2013). https://doi.org/10.1007/s10452-013-9448-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-013-9448-x

Keywords

Navigation