Skip to main content
Log in

Ocean waves, nearshore ecology, and natural selection

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Although they are subjected to one of the most stressful physical environments on earth, wave-swept rocky shores support a highly diverse community of plants and animals. The surprising presence of such diversity amidst severe environmental adversity provides a unique opportunity for exploration of the role of extreme water flows in community ecology and natural selection. Methods are described by which the maximal water velocity and acceleration can be predicted for a site on the shore, and from these values maximal hydrodynamic forces are calculated. These forces can limit the range and foraging activity of some species, and can determine the rate of disturbance in others, but in general, wave-swept organisms have surprisingly high factors of safety. This apparent over-design can help to explain the diversity of forms present on wave-swept shores, and provides examples of how mechanics can limit the ability of natural selection to guide specialization. Although flow itself may commonly be prohibited from selecting for optima in morphology, it nonetheless continues to play a potentially important role in evolution by providing a mechanism for breaking or dislodging individuals that have been selected by other means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abelson A. and Denny M. (1997). Settlement of marine organisms in flow. Ann. Rev. Ecol. Syst. 28: 317–339

    Article  Google Scholar 

  • Alexander R.McN. (1981). Factors of safety in the structure of animals. Sci. Progr. Oxf. 67: 109–130

    CAS  Google Scholar 

  • Batchelor G.K. (1967). An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Bascomb W. (1980). Waves and Beaches. Ancor Press/Doubleday, Garden City, NY

    Google Scholar 

  • Battjes J.A. 1970. Long-term wave height distribution at seven stations around the British Isles. National Institute of Oceanography (UK) Internal Report Number A.44.

  • Bell E.C. (1993). Mar. Biol. 117: 337–346

    Article  Google Scholar 

  • Bell E.C. and Denny M.W. (1994). Quantifying ‘wave exposure’: a simple device for recording maximum velocity and results of its use at several field sites. J. Exp. Mar. Biol. Ecol. 181: 9–29

    Article  Google Scholar 

  • Blanchette C.A. (1996). J. Exp. Mar. Biol. Ecol. 197: 1–14

    Article  Google Scholar 

  • Blanchette C.A. (1997). Ecology 78: 1563–1578

    Article  Google Scholar 

  • Carrington E. (1990). Drag and dislodgment of an intertidal macroalga: consequences of morphological variation in Mastocarpus papillatus Kützing. J. Exp. Mar. Biol. Ecol. 139: 185–200

    Article  Google Scholar 

  • Carrington E. (2002). Seasonal variation in the attachment strength of blue mussels: causes and consequences. Limnol. Oceanogr. 47: 1723–1733

    Article  Google Scholar 

  • Connell J.H. (1961). Ecology 42: 710–723

    Article  Google Scholar 

  • Connell J.H. (1972). Community interactions on marine rocky intertidal shores. Ann. Rev. Ecol. Syst. 3: 169–192

    Article  Google Scholar 

  • Connell J.H. (1978). Diversity in tropical rainforests and coral reefs. Science 199: 1302–1310

    Article  PubMed  CAS  Google Scholar 

  • Dayton P.K. (1971). Competition, disturbanceand community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol. Monogr. 45: 137–159

    Article  Google Scholar 

  • Dayton P.K. (1985). Ecology of kelp communities. Ann. Rev. Ecol. Syst. 16: 215–246

    Article  Google Scholar 

  • Dayton P.K., Currie V., Gerrodette T., Keller B. and Rosenthal R. (1984). Patch dynamics and stability of some southern California kelp communities. Ecol. Monogr. 54: 253–289

    Article  Google Scholar 

  • Dayton P.K., Tegner M.J., Parnell P.E. and Edwards P.B. (1992). Temporal and spatial patterns of disturbance and recovery in a kelp forest community. Ecol. Monogr. 62: 421–445

    Article  Google Scholar 

  • Denny M.W. (1988). Biology and the Mechanics of the Wave-Swept Environment. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Denny M. (1989). A limpet shell shape that reduces drag: laboratory demonstration of a hydrodynamic mechanism and an exploration of its effectiveness in nature. Can. J. Zool. 67: 2098–2106

    Article  Google Scholar 

  • Denny M.W. (1995). Predicting physical disturbance: mechanistic approaches to the study of survivorship on wave-swept shores. Ecol. Monogr. 65: 371–418

    Article  Google Scholar 

  • Denny M.W. (2000). Are there mechanical limits to size in wave-swept organisms?. J. Exp. Biol. 202: 3463–3467

    Google Scholar 

  • Denny M.W., Daniel T.L. and Koehl M.A.R. (1985). Mechanical limits to size in wave-swept organisms. Ecol. Monogr. 51: 69–102

    Article  Google Scholar 

  • Denny M.W., Brown V., Carrington E., Kraemer G. and Miller A. (1989). Fracture mechanics and the survival of wave-swept macroalgae. J. Exp. Mar. Biol. Ecol. 127: 211–228

    Article  Google Scholar 

  • Denny M. and Gaylord B. (1996). Why the urchin lost its spines: hydrodynamic forces and survivorship in three echinoids. J. Exp. Biol. 199: 717–729

    PubMed  Google Scholar 

  • Denny M.W., Gaylord B.P. and Cowen E.A. (1997). J. Exp. Biol. 200: 3165–3183

    PubMed  Google Scholar 

  • Denny M., Gaylord B., Helmuth B. and Daniel T. (1998). The menace of momentum: dynamic forces on flexible organisms. Limnol. Oceanogr. 43: 955–968

    Article  Google Scholar 

  • Denny M.W. and Gaines S. (1999). Chance in Biology. Princeton University Press.

  • Denny M.W. and Blanchette C.A. (2000). J. Exp. Biol. 203: 2623–2639

    PubMed  CAS  Google Scholar 

  • Denny M.W. and Wethey D. (2000). Physical processes that generate patterns in marine communities. In: Bertness, M.D., Gaines, S.D. and Hay, M.E. (eds) Marine Community Ecology, pp 3–38. Sinauer, New York

    Google Scholar 

  • Denny M.W., Miller L.P., Stokes M.D., Hunt L.J.H. and Helmuth B.S.T. (2003). Topographical amplification of wave-induced flow in the surf zone of rocky shores. Limnol. Oceanogr. 48: 1–8

    Article  Google Scholar 

  • Dudgeon S.R. and Johnson A.S. (1992). Thick vs. thin: thallus morphology and tissue mechanics influence differential drag and dislodgment of two co-dominant seaweeds. J. Exp. Mar. Biol. Ecol. 165: 23–43

    Article  Google Scholar 

  • Ebling A.W., Laur D.R. and Rowley R.J. (1985). Severe storm disturbance and reversal of community structure in a southern California kelp forest. Mar. Biol. 84: 287–294

    Article  Google Scholar 

  • Eckart C. (1951). Surface waves on water of variable depth. Scripps Institute of Oceanography, La Jolla, CA

    Google Scholar 

  • Etter R.J. (1988). Asymmetrical developmental plasticity in an intertidal snail. Evolution 42: 322–334

    Article  Google Scholar 

  • Friedland M. and Denny M.W. (1995). Surviving hydrodynamic forces in a wave-swept environment: consequences of morphology in the feather boa kelp, Egregia menziesii (Turner). J. Exp. Mar. Biol. Ecol. 190: 109–133

    Article  Google Scholar 

  • Galvin C.J. (1972). Wave breaking in shallow water. In: Meyers, R.E. (eds) Waves on Beaches and Resulting Sediment Transport, pp. Academic Press, NY

    Google Scholar 

  • Gaylord B. (1999). Detailing agents of physical disturbance: wave-induced velocities and accelerations on a rocky shore. J. Exp. Mar. Biol. Ecol. 239: 85–124

    Article  Google Scholar 

  • Gaylord B. (2000). Biological implications of surf-zone flow complexity. Limnol. Oceanogr. 45: 174–188

    Article  Google Scholar 

  • Gaylord B., Blanchette C.A. and Denny M.W. (1994). Mechanical consequences of size in wave-swept algae. Ecol. Monogr. 64: 287–313

    Article  Google Scholar 

  • Gaylord B. and Denny M. (1997). J. Exp. Biol. 200: 3141–3164

    PubMed  Google Scholar 

  • George R., Flick R.E. and Guza R.T. (1994). Observation of turbulence in the surf zone. J. Geophys. Res. 99(C1): 801–810

    Article  Google Scholar 

  • Gerard V.A. (1987). Hydrodynamic streamlining of Laminaria saccharina Lamour. in response to mechanical stress. J. Exp. Mar. Biol. Ecol. 107: 237–244

    Article  Google Scholar 

  • Graham M. (1997). Factors determining the upper limit of the giant kelp, Macrocystis pyrifera Agardhalong the Monterey peninsulacentral California, USA. J. Exp. Mar. Biol. Ecol. 218: 127–149

    Article  Google Scholar 

  • Grant W.D. and Madsen O.S. (1986). The continental shelf bottom boundary layer. Ann. Rev. Fluid Mech. 18: 265–305

    Article  Google Scholar 

  • Hibberd S. and Peregrine D.H. (1979). Surf and run-up on a beach: a uniform bore. J. Fluid Mech. 95: 323–345

    Article  Google Scholar 

  • Hoffman G.E., Buckley B.A., Place S.P. and Zippay M.L. (2002). Molecular chaperones in ectothermic marine animals: biochemical function and gene expression. Int. Comp. Biol. 42: 808–814

    Article  Google Scholar 

  • Johnson A.S. and Koehl M.A.R. (1994). Maintenance of dynamic strain similarity and environmental stress factor in different flow habitats: thallus allometry and material properties of giant kelp. J. Exp. Biol. 195: 381–410

    PubMed  Google Scholar 

  • Johnson L.E. (1994). Limnol. Oceanogr. 39: 1893–1902

    Article  Google Scholar 

  • Judge M.L. (1988). The effects of increased drag on Lottia gigantea (Sowerby 1834) foraging behavior. Funct. Ecol. 2: 363–369

    Article  Google Scholar 

  • Kawamata S. (1998). Effect of wave-induced oscillatory flow on grazing by a subtidal sea urchin Strongylocentrotus nudus (A. Agassiz). J. Exp. Mar. Biol. Ecol. 224: 31–48

    Article  Google Scholar 

  • Kinsman B. (1965). Wind Waves. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Koehl M.A.R. (1977). Effects of sea anemones on the flow forces they encounter. J. Exp. Biol. 69: 87–105

    Google Scholar 

  • Koehl M.A.R. (1984). How do benthic organisms withstand moving water. Am. Zool. 24: 57–70

    Google Scholar 

  • Koehl M.A.R. (1986). Seaweeds in moving water: forma and mechanical function. In: Givnish, T.J. (eds) On the Economy of Plant Form and Function, pp 603–634. Cambridge University Press, Cambridge

    Google Scholar 

  • Koehl M.A.R. (1999). Ecological biomechanics of benthic organisms: life history, mechanical design and temporal patterns of mechanical stress. J. Exp. Biol. 202: 3469–3476

    PubMed  CAS  Google Scholar 

  • Koehl M.A.R. and Wainwright S.A. (1977). mechanical design of a giant kelp. Limnol. Oceanogr. 22: 1067–1071

    Article  Google Scholar 

  • Koehl M.A.R. and Alberte R.S. (1988). Flow, flapping and photosynthesis of Nereocystis luetkeana: a functional comparison of undulate and flat blade morphologies. Mar. Biol. 99: 435–444

    Article  Google Scholar 

  • Leigh E.G., Paine R.T., Quinn J.F. and Suchanek T.H. (1987). Wave energy and intertidal productivity. Proc. Natl. Acad. Sci. USA 84: 1314–1318

    Article  PubMed  CAS  Google Scholar 

  • Lewis J.R. (1964). The Ecology of Rocky Shores. English Universities Press, London

    Google Scholar 

  • Levitan D.R. (1995). The ecology of fertilization in free-spawning invertebrates. In: McEdwards, L.M. (eds) Ecology of Marine Invertebrate Larvae, pp. CRC Press, Boca Raton, FL

    Google Scholar 

  • Longuet-Higgins M.S. (1952). On the statistical distribution of the heights of sea waves. J. Mar. Res. 11: 245–266

    Google Scholar 

  • Longuet-Higgins M.S. (1980). On the distribution of heights of sea waves: some effects of nonlinearity and finite bandwidth. J. Geophys. Res. 85(C3): 1519–1523

    Google Scholar 

  • Lowell R.B. (1985). Selection for increased safety factors of biological structures as environmental unpredictability increases. Science 228: 1009–1011

    Article  PubMed  CAS  Google Scholar 

  • Lowell R.B. (1987). Safety factors of tropical versus temperate limpet shells: multiple selection pressures on a single structure. Evolution 41: 638–650

    Article  Google Scholar 

  • Lubchenco J. (1978). Plant diversity in a marine intertidal community: importance of herbivore food preference and algal competitive abilities. Am. Nat. 112: 23–39

    Article  Google Scholar 

  • Massel S.R. (1996). Ocean Surface Waves: Their Physics and Prediction. World Scientific, London

    Google Scholar 

  • Massel S.R. and Done T.J. (1993). Effects of cyclone waves on massive coral assemblages on the Great Barrier Reef: meteorology, hydrodynamics and demography. Coral Reefs 12: 153–166

    Article  Google Scholar 

  • Menge B.A. (1976). Organization of the New England rocky intertidal community: role of predation, competition and environmental heterogeneity. Ecol. Monogr. 46: 355–393

    Article  Google Scholar 

  • Menge B.A. (1978). Predation intensity in a rocky intertidal community: relation between predator foraging activity and environmental harshness. Oecologia 34: 1–16

    Article  Google Scholar 

  • Munk W.H. (1949). The solitary wave theory and its application to surf problems. Ann. New York Acad. Sci. 51: 376–424

    Google Scholar 

  • Newell R.C. (1979). Biology of Intertidal Organisms. Marine Ecological Surveys, Faversham, UK

    Google Scholar 

  • Paine R.T. (1966). Food web complexity and species diversity. Am. Nat. 100: 65–75

    Article  Google Scholar 

  • Paine R.T. (1974). Intertidal community structure: experimental studies on the relationship between a dominant competitor and its principal predator. Oecologia 15: 93–120

    Article  Google Scholar 

  • Paine R.T. (1979). Disastercatastropheand local persistence of the sea palmPostelsia palmaeformis. Science 205: 685–687

    Article  PubMed  CAS  Google Scholar 

  • Paine R.T. and Levin S.A. (1981). Intertidal landscapes: disturbance and the dynamics of pattern. Ecol. Monogr. 51: 145–178

    Article  Google Scholar 

  • Pearson G.A. and Brawley S.H. (1998). Sensing hydrodynamic conditions via carbon acquisition: control of gamete release in fucoid seaweeds. Ecology 79: 1725–1739

    Article  Google Scholar 

  • Rayleigh J.W.S. (1880). On the resultant of a large number of vibrations of the same pitch and arbitrary phase. Phil. Mag. 10: 73–78

    Google Scholar 

  • Ricketts E.F., Calvin J., Hedgpeth J.W. and Phillips D.W. (1985). Between Pacific Tides. Stanford University Press, Stanford, CA

    Google Scholar 

  • Schlichting H. (1979). Boundary-Layer Theory. McGraw-Hill, NY

    Google Scholar 

  • Serrão E.A., Pearson G.A., Kautsky L. and Brawley S.H. (1996). Successful external fertilization in turbulent environments. Proc. Natl. Acad. Sci. USA 93: 5286–5290

    Article  PubMed  Google Scholar 

  • Seymour R.J., Tegner M.J., Dayton P.K. and Parnell P.E. (1989). Storm wave induced mortality of the giant kelp, Macrocystis pyriferain southern California. Est. Coast. Shelf Sci. 28: 277–292

    Article  Google Scholar 

  • Shanks A.L. and Wright W.G. (1986). Adding teeth to wave action: the destructive effects of wave-borne rocks on intertidal organisms. Oecologia 69: 420–428

    Article  Google Scholar 

  • Shaughnessy F.J., DeWreede R.E. and Bell E.C. (1996). Consequences of morphology and tissue strength to blade survivorship of two closely related Rhodophyta species. Mar. Ecol. Progr. Ser. 136: 257–266

    Google Scholar 

  • Somero G. (2002). Thermal physiology and vertical zonation of intertidal animals: Optimalimits and costs of living. Int. Comp. Biol. 42: 779–780

    Google Scholar 

  • Sousa W.P. (1979). Disturbance in marine intertidal boulder fields: the nonequilibrium maintenance of species diversity. Ecology 60: 1225–1239

    Article  Google Scholar 

  • Stillman J. 2002. Causes and consequences of thermal tolerance limits in rocky intertidal porcelain crabs, genus Petrolisthes. Int. Comp. Biol.: 790–796.

  • Svendsen I.A. (1987). Analysis of surf zone turbulence. J. Geophys. Res. 92: 5115–5124

    Article  Google Scholar 

  • Thornton E.B. and Guza R.T. (1983). Transformation of wave height distribution. J. Geophys. Res. 88(C10): 5925–5938

    Google Scholar 

  • Tomanek L. (2002). The heat-shock response: its variation, regulation and ecological importance in intertidal gastropods (genus Tegula). Int. Comp. Biol. 42: 797–807

    Article  CAS  Google Scholar 

  • Tomanek L. and Helmuth B. (2002). Physiological ecology of inertial organisms: a synergy of concepts. Int. Comp. Biol. 42: 771–775

    Article  Google Scholar 

  • Tricker R.A.R. (1964). Bores, Breakers, Waves and Wakes. Mills and Boon, London

    Google Scholar 

  • Trussell G.C. (1997). Phenotypic plasticity in the foot size of an intertidal snail. Ecology 78: 1033–1048

    Article  Google Scholar 

  • (1984). Shore Protection Manual. US Government Printing Office, Washington, DC

    Google Scholar 

  • Utter B.D. and Denny M.W. (1996). Wave-induced forces on the giant kelp Macrocystis pyrifera (Agardh): field test of a computational model. J. Exp. Biol. 199: 2645–2654

    PubMed  Google Scholar 

  • Van Dorn W.G. 1976. Set-up and run-up in shoaling breakers. Proc. 15th Int. Coastal Eng. Conf., pp. 738–751.

  • Van Dorn W.G. (1978). Breaking invariants in shoaling waves. J. Geophys. Res. 83: 2981–2988

    Google Scholar 

  • Vogel S. (1994). Life in Moving Fluids. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Wing S.R. and Patterson M.R. (1993). Effects of wave-induced lightflecks in the intertidal zone on photosynthesis in the macroalgae Postelsia palmaeformis and Hedophylum sessile (Phaeophyceae). Mar. Biol. 116: 519–525

    Article  Google Scholar 

  • Witman J.D. (1987). Subtidal coexistence: storms, grazing, mutualismand the zonation of kelps and mussels. Ecol. Monogr. 57: 167–187

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Denny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denny, M.W. Ocean waves, nearshore ecology, and natural selection. Aquat Ecol 40, 439–461 (2006). https://doi.org/10.1007/s10452-004-5409-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-004-5409-8

Key words

Navigation