Skip to main content
Log in

Adsorption of CO and NO molecules on Al, P and Si embedded MoS2 nanosheets investigated by DFT calculations

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Using density functional theory (DFT), we presented a theoretical investigation of CO and NO gas molecules adsorption on the Al-doped, P-doped and Si-doped MoS2 monolayers. Our main focus is on the interactions between the dopants (Al, P and Si) and gas molecules. The properties of the adsorption system were analyzed in view of the density of states, electron density distribution, charge density differences and electronic band structures. Various orientations of CO and NO molecules were considered on the MoS2 monolayer to search for the most stable configurations. The results suggest that the adsorption of gas molecules on the doped MoS2 monolayers is more favorable in energy than that on the pristine monolayers. This means that the interaction between doped MoS2 and gas molecules is stronger than that between pristine MoS2 and gas molecules. Our calculations show shorter adsorption distance and higher adsorption energy for Al-doped and Si-doped monolayers than the P-doped and pristine ones. Charge density difference calculations show the charge accumulation between the interacting atoms, suggesting the formation of covalent bonds, as evidenced by the projected density of states of the interacting atoms. Our results confirm that Al-doped and Si-doped MoS2 can be used as efficient and promising sensor materials for CO and NO detection in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abbasi, A.: Adsorption of phenol, hydrazine and thiophene on stanene monolayers: a computational investigation. Synth. Metal 247, 26–36 (2019)

    Article  CAS  Google Scholar 

  • Abbasi, A., Sardroodi, J.J.: N-doped TiO2 anatase nanoparticles as a highly sensitive gas sensor for NO2 detection: insights from DFT computations. Environ. Sci. Nano 3, 1153–1164 (2016a)

    Article  CAS  Google Scholar 

  • Abbasi, A., Sardroodi, J.J.: Theoretical study of the adsorption of NOx on TiO2/MoS2 nanocomposites: a comparison between undoped and N-doped nanocomposites. J. Nanostruct. Chem. 6, 309–327 (2016b)

    Article  CAS  Google Scholar 

  • Abbasi, A., Sardroodi, J.J.: An innovative gas sensor system designed from a sensitive nanostructured ZnO for the selective detection of SOx molecules: a density functional theory study. N. J. Chem. 41, 12569–12580 (2017a)

    Article  CAS  Google Scholar 

  • Abbasi, A., Sardroodi, J.J.: Prediction of a highly sensitive molecule sensor for SOx detection based on TiO2/MoS2 nanocomposites: a DFT study. J. Sulfur Chem. 38(1), 52–68 (2017b)

    Article  CAS  Google Scholar 

  • Abbasi, A., Sardroodi, J.J.: Investigation of the adsorption of ozone molecules on TiO2/WSe2 nanocomposites by DFT computations: applications to gas sensor devices. Appl. Surf. Sci. 436, 27–41 (2018a)

    Article  CAS  Google Scholar 

  • Abbasi, A., Sardroodi, J.J.: Structural and electronic properties of group-IV tin nanotubes and their effects on the adsorption of SO2 molecules: insights from DFT computations. J. Appl. Phys. 124, 165302 (2018b)

    Article  CAS  Google Scholar 

  • Abbasi, A., Sardroodi, J.J.: Exploration of sensing of nitrogen dioxide and ozone molecules using novel TiO2/Stanene heterostructures employing DFT calculations. Appl. Surf. Sci. 442, 368–381 (2018c)

    Article  CAS  Google Scholar 

  • Abbasi, A., Sardroodi, J.J.: The adsorption of sulfur trioxide and ozone molecules on stanene nanosheets investigated by DFT: applications to gas sensor devices. Physica E 108, 382–390 (2019a)

    Article  CAS  Google Scholar 

  • Abbasi, A., Sardroodi, J.J.: Adsorption of O3, SO2 and SO3 gas molecules on MoS2 monolayers: a computational investigation. Appl. Surf. Sci. 469, 781–791 (2019b)

    Article  CAS  Google Scholar 

  • Ao, Z.M., Li, S., Jiang, Q.: Correlation of the applied electrical field and CO adsorption/desorption behavior on Al-doped graphene. Solid State Commun. 150, 680 (2010)

    Article  CAS  Google Scholar 

  • Ataca, C., Ciraci, S.: Functionalization of single-layer MoS2 honeycomb structures. J. Phys. Chem. C 115, 13303–13311 (2011)

    Article  CAS  Google Scholar 

  • Blochl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)

    Article  CAS  Google Scholar 

  • Chen, D.C., Tang, J., Zhang, X.X., Li, Y., Liu, H.J.: Detecting decompositions of sulfur hexafluoride using MoS2 Monolayer as gas sensor. IEEE Sens. J. 19, 39–46 (2019)

    Article  CAS  Google Scholar 

  • Cheng, Y.C., Zhu, Z.Y., Mi, W.B., Guo, Z.B., Schwingenschlogl, U.: Prediction of two-dimensional diluted magnetic semiconductors: doped monolayer MoS2 systems. Phys. Rev. BV 87, 100401 (2013)

    Article  CAS  Google Scholar 

  • Cho, B., Yoon, J., Lim, S.K., Kim, A.R., Kim, D.H., Park, S.G., Kwon, J.D., Lee, Y.J., Lee, K.H., Lee, B.H.: Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl. Mater. Int. 7, 16775–16780 (2015a)

    Article  CAS  Google Scholar 

  • Cho, B., Hahm, M.G., Choi, M., Yoon, J., Kim, A.R., Lee, Y.-J., Park, S.-G., Kwon, J.-D., Kim, C.S., Song, M., Jeong, Y., Nam, K.-S., Lee, S., Yoo, T.J., Kang, C.G., Lee, B.H., Ko, H.C., Ajayan, P.M., Kim, D.-H.: Charge-transfer-based Gas sensing using atomic-layer MoS2. Sci. Rep. 5, 8052 (2015b)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai, J., Yuan, J., Giannozzi, P.: Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study. Appl. Phys. Lett. 95, 232105 (2009)

    Article  CAS  Google Scholar 

  • Donarelli, M., Prezioso, S., Perrozzi, F., Bisti, F., Nardone, M., Giancaterini, L., Cantalini, C., Ottaviano, L.: Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors. Sens. Actuat. B 207, 602–613 (2015)

    Article  CAS  Google Scholar 

  • Fan, C., Liu, G.Z., Zhang, Y.H., Wang, M.J.: Synthesis and gas-responsive characteristics to methanol and isopropanol of bean-sprout-like MoS2. Mater. Lett. 209, 8–10 (2017)

    Article  CAS  Google Scholar 

  • Fernandez-Garcia, M., Martinez-Arias, A., Hanson, J.C., Rodriguez, J.A.: Nanostructured oxides in chemistry: characterization and properties. J. Chem. Rev. 104, 4063–4104 (2004)

    Article  CAS  Google Scholar 

  • He, Q., Zeng, Z., Yin, Z., Li, H., Wu, S., Huang, X., Zhang, H.: Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8, 2994 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Hohenberg, P., Kohn, W.: Inhomogeneous Electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  Google Scholar 

  • Huang, B., Li, Z., Liu, Z., Zhou, G., Hao, S., Wu, J., Gu, B.-L., Duan, W.: Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. J. Phys. Chem. C 112, 13442–13446 (2008)

    Article  CAS  Google Scholar 

  • Huang, Z., Peng, X., Yang, H., He, C., Xue, L., Hao, G., Zhang, C., Liu, W., Qi, X., Zhong, J.: The structural, electronic and magnetic properties of bi-layered MoS2 with transition-metals doped in the interlayer. RSC Adv. 3, 12939 (2013)

    Article  CAS  Google Scholar 

  • Joensen, P., Crozier, E.D., Alberding, N., Frindt, R.F.: A study of single-layer and restacked MoS2 by X-ray diffraction and X-ray absorption spectroscopy. J. Phys. C 20, 4043 (1987)

    Article  CAS  Google Scholar 

  • Kang, J., Kim, Y.-H., Glatzmaier, G.C., Wei, S.-H.: Origin of anomalous strain effects on the molecular adsorption on boron-doped graphene. J. Chem. Phys. 139, 044709 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Kemp, K.C., Seema, H., Saleh, M., Le, N.H., Mahesh, K., Chandraa, V., Kim, K.S.: Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale 5, 3149–3171 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Kohn, W., Sham, L.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    Article  Google Scholar 

  • Koklj, A.: Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput. Mater. Sci. 28, 155–168 (2003)

    Article  CAS  Google Scholar 

  • Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)

    Article  CAS  Google Scholar 

  • Late, D.J., Huang, Y.-K., Liu, B., Acharya, J., Shirodkar, S.N., Luo, J., Yan, A., Charles, D., Waghmare, U.V., Dravid, V.P., Rao, C.N.R.: Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7, 4879 (2013a)

    Article  CAS  PubMed  Google Scholar 

  • Late, D.J., Huang, Y.-K., Liu, B., Acharya, J., Shirodkar, S.N., Luo, J., Yan, A., Charles, D., Waghmare, U.V., Dravid, V.P., Rao, C.N.R.: Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7, 4879–4891 (2013b)

    Article  CAS  PubMed  Google Scholar 

  • Le, D., Rawal, T.B., Rahman, T.S.: Single-layer MoS2 with sulfur vacancies: structure and catalytic application. J. Phys. Chem. C 118, 5346–5351 (2014)

    Article  CAS  Google Scholar 

  • Lee, K., Gatensby, R., McEvoy, N., Hallam, T., Duesberg, G.S.: High-performance sensors based on molybdenum disulfide thin films. Adv. Mater. 25, 6699–6702 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Leenaerts, O., Partoens, B., Peeters, F.M.: Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys. Rev. B 77, 125416 (2008)

    Article  CAS  Google Scholar 

  • Li, H., Yin, Z., He, Q., Li, H., Huang, X., Lu, G., Fam, D.W.H., Tok, A.I.Y., Zhang, Q., Zhang, H.: Fabrication of single-and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8, 63 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Luo, H., Cao, Y., Zhou, J., Feng, J., Cao, J., Guo, H.: Adsorption of NO2, NH3 on monolayer MoS2 doped with Al, Si, and P: A first-principles study. Chem. Phys. Lett. 643, 27–33 (2016a)

    Article  CAS  Google Scholar 

  • Luo, H., Cao, Y., Zhou, J., Feng, J., Cao, J., Guo, H.: Adsorption of NO2, NH3 on monolayer MoS2 doped with Al, Si, and P: a first-principles study. Chem. Phys. Lett. 643, 27–33 (2016b)

    Article  CAS  Google Scholar 

  • Ma, D., Ju, W., Li, T., Zhang, X., He, C., Ma, B., Lu, Z., Yang, Z.: The adsorption of CO and NO on the MoS2 monolayer doped with Au, Pt, Pd, or Ni: A first-principles study. Appl. Surf. Sci. 383, 98–105 (2016)

    Article  CAS  Google Scholar 

  • Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Momma, K., Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)

    Article  CAS  Google Scholar 

  • Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    Article  Google Scholar 

  • Niu, F., Liu, J.-M., Tao, L.-M., Wang, W., Song, W.-G.: Nitrogen and silica co-doped graphene nanosheets for NO2 gas sensing. J. Mater. Chem. A 1, 6130–6133 (2013)

    Article  CAS  Google Scholar 

  • Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 78, 1396 (1997)

    Article  CAS  Google Scholar 

  • Sienicki, W., Hryniewicz, T.: Solar Energy Mater. Solar Cells 43, 67 (1996)

    Article  CAS  Google Scholar 

  • Soler, J.M., Artacho, E., Gale, J.D., Garca, A., Junquera, J., Ordejn, P., Snchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys. 14, 2745–2779 (2002)

    CAS  Google Scholar 

  • Tang, S., Cao, Z.: Adsorption of nitrogen oxides on graphene and graphene oxides: INSIGHTS from density functional calculations. J. Chem. Phys. 134, 044710 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Tang, S., Cao, Z.: Adsorption and dissociation of ammonia on graphene oxides: a first-principles study. J. Phys. Chem. C 116, 8778–8791 (2012)

    Article  CAS  Google Scholar 

  • Troullier, N., Martins, J.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991)

    Article  CAS  Google Scholar 

  • Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Wilcoxon, J., Thurston, T., Martin, J.: Applications of metal and semiconductor nanoclusters as thermal and photo-catalysts. Nanostruct. Mater. 12, 993–997 (1999)

    Article  Google Scholar 

  • Yao, Y., Tolentino, L., Yang, Z., Song, X., Zhang, W., Chen, Y., Wong, C.-P.: High-concentration aqueous dispersions of MoS2. Adv. Funct. Mater. 23, 3577–3583 (2013)

    Article  CAS  Google Scholar 

  • Yuan, W., Shi, G.: Graphene based gas sensors. J. Mater. Chem. A 1, 10078–10091 (2013)

    Article  CAS  Google Scholar 

  • Yue, Q., Shao, Z., Chang, S., Li, J.: Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res. Lett. 8, 425 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, D.Z., Jiang, C.X., Li, P., Sun, Y.: Layer-by-layer self-assembly of Co3O4 nanorod-decorated MoS2nanosheet-based nanocomposite toward high-performance ammonia detection. ACS Appl. Mater. Int. 9, 6462–6471 (2017)

    Article  CAS  Google Scholar 

  • Zhao, S., Xue, J., Kang, W.: Gas adsorption on MoS2 monolayer from first-principles calculations. Chem. Phys. Lett. 595, 35 (2014)

    Article  CAS  Google Scholar 

  • Zhou, Y.G., Zu, X.T., Gao, F., Nie, J.L., Xiao, H.Y.: Adsorption of hydrogen on boron-doped graphene: a first-principles prediction. J. Appl. Phys. 105, 014309 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by Azarbaijan Shahid Madani University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirali Abbasi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, A., Abdelrasoul, A. & Sardroodi, J.J. Adsorption of CO and NO molecules on Al, P and Si embedded MoS2 nanosheets investigated by DFT calculations. Adsorption 25, 1001–1017 (2019). https://doi.org/10.1007/s10450-019-00121-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-019-00121-6

Keywords

Navigation