Skip to main content

Advertisement

Log in

Determination of absolute gas adsorption isotherms: simple method based on the potential theory for buoyancy effect correction of pure gas and gas mixtures adsorption

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The absolute adsorption isotherms are necessary to correctly evaluate the selectivity of the adsorbent material or to design adsorption processes at high pressure (e.g., H2 purification from syngas processes, removal of acid gas from natural gas,…). The aim of this work is thus to propose an easy method to correct the buoyancy effect of the bulk phase on the adsorbed phase volume during both pure gas and gas mixtures adsorption for pressures up to 10 MPa. The potential theory of adsorption and the Dubinin–Radushkevich relation are adapted by introducing mixing parameters based on simple Berthelot rules. The concept of internal pressure used to characterize the adsorbed phase is also adapted for mixtures. The method is then improved on a commercial activated carbon (AC), when adsorbing pure H2S and CH4, and their mixtures up to 5 MPa. The study points out the importance to carefully consider the buoyancy effect of the bulk phase on the adsorbed phase volume. Its impact on the adsorbent material selectivity at high pressures could affect the design and the performances of PSA or TSA processes. For example, only considering the excess adsorption data leads to an apparent selectivity 13 % greater than the absolute one for a concentration of 6 ppm of H2S in a CH4 matrix at 5 MPa (298 K) on the AC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agarwal, R.K., Schwarz J.A.: Analysis of high pressure adsorption of gases on activated carbon by potential theory. Carbon 26, 873–887 (1988)

    Article  CAS  Google Scholar 

  • Berezin, G.I.: Relation between critical parameters of gases and their adsorption constants. Dokl. Akad. Nauk. SSSR 217, 843–845 (1979)

    Google Scholar 

  • Berezin, G.I.: Calculation of the Henry constant from the critical parameters of an adsorbed gas. Russ. J. Phys. Chem. 57, 391–395 (1983)

    CAS  Google Scholar 

  • Billemont, P., Coasne, B., De Weireld, G.: An experimental and molecular simulation study of the adsorption of carbon dioxide and methane in nanoporous carbons in the presence of water. Langmuir 27, 1015–1024 (2011)

    Article  CAS  Google Scholar 

  • Cook, W.H., Basmadjian, D.: Correlation of adsorption equilibria of pure gases on activated carbon. Can. J. Chem. Eng. 42, 146–151 (1964)

    Article  CAS  Google Scholar 

  • De Weireld, G., Frère, M., Jadot, R.: A new gravimetric method for the determination of high temperature and high pressure gas adsorption isotherms. Meas. Sci. Technol. 10, 117–126 (1999)

    Article  CAS  Google Scholar 

  • De Weireld, G.: Apport expérimental et théeorique à la prédiction du comportement adsorbat/adsorbant dans une large gamme de température et de pression. PhD thesis, Faculté Polytechnique de Mons, Mons, Belgium (2000)

  • Dreisbach, F., Staudt, R., Tomalla, M., Keller, J.U.: Measurement of adsorption equilibria of pure and mixed corrosive gases: the magnetic suspension balance, In: LeVan, M.D. (ed) Fundamentals of Adsorption. pp 259–268, Kluwer Academic Publishers, Boston (1996)

    Chapter  Google Scholar 

  • Dubinin, M.M., Radushkevich, L.V.: Equation of the characteristic curve of activated charcoal. Proc. Acad. Sci. Phys. Chem. Sect. USSR 55, 331–333 (1947).

    Google Scholar 

  • Dubinin, M.M., Tomofeyev, P.: Adsorption of vapors on active carbons in relation to the properties of the adsorbate. Dokl. Akad. Nauk. SSSR 54, 701–704 (1946)

    CAS  Google Scholar 

  • Dubinin, M.M., Zaverina, E.D.: Adsorption of gases by activated carbon. Dokl. Akad. Nauk. SSSR 72 319 (1950)

    CAS  Google Scholar 

  • Dubinin, M.M., Zaverina, E.D., Radushkevich, L.V.: Sorption and structure of activated carbon. I. Adsorption of organic vapors. Zh. Fiz. Khim. 21, 1351–1362 (1947)

    CAS  Google Scholar 

  • Dubinin, M.M., Neimark, A.V., Sperpinsky, V.V.: Impact of the adsorbate compressibility on the calculation of the micropore volume. Carbon 31 1015–1018 (1993)

    Article  CAS  Google Scholar 

  • Dubinin, M.M.: The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60, 235–241 (1960)

    Article  CAS  Google Scholar 

  • Dubinin, M.M.: Adsorption in micropores. J. Colloid Interface Sci. 23, 487–499 (1967)

    Article  CAS  Google Scholar 

  • Dubinin, M.M.: Physical adsorption of gases and vapors in micropores. In: Cahenhead DA (ed) Progress in Surface and Membrane Science, pp 1–70. Academic Press, New York (1975)

    Google Scholar 

  • Frère, M., Jadot, R., Bougard, J.: Determination of the micropore volume distribution function of activated carbons by gas adsorption. Adsorption 3, 55–65 (1996)

    Article  Google Scholar 

  • Gumma, S., Talu, O.: Net adsorption: A thermodynamic framework for supercritical gas adsorption and storage in porous solids. Langmuir 26, 17013–17023 (2010)

    Article  CAS  Google Scholar 

  • Hamon, L., Frère, M., De Weireld, G.: Development of a new apparatus for gas mixture adsorption measurements coupling gravimetric and chromatographic techniques. Adsorption 14, 493–499 (2008)

    Article  CAS  Google Scholar 

  • Jagiello, J., Schwarz, J.: Relationship between energetic and structural heterogeneity of microporous carbons determined on the basis of adsorption potentials in model micropores. Langmuir 9, 2513–2517 (1993)

    Article  CAS  Google Scholar 

  • Jagiello, J., Bandosz, T., Putyera, K., Schwarz, J.: Adsorption energy and structural heterogeneity of activated carbon. Elsevier Science PBV, Amsterdam (1994)

    Google Scholar 

  • Krishna, R.: Adsorptive separation of CO2/CH4/CO gas mixtures. Microporous Mesoporous Mater. 156, 217–223 (2012)

    Article  CAS  Google Scholar 

  • Kunz, O., Klimeck, R., Wagner, W., Jaeschke, M.: The GERG-2004 wide-range equation of state for natural gases and other mixtures. VDI Verlag GmbH, Dsseldorf, Germany (2007)

    Google Scholar 

  • Lemmon, E.W., Span, R., Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51, 785–850 (2006)

    Article  CAS  Google Scholar 

  • Lewis, W.K., Gilliland, E.R., Chertow, R., Cadogan, W.P.: Adsorption equilibria. Hydrocarbon gas mixtures. Ind. Eng. Chem. 42, 1319–1326 (1950)

    Article  CAS  Google Scholar 

  • London, F.: Zur Theorie und Systematik der Molekularkräfte, Z. Physik 63, 245–279 (1930)

    Article  CAS  Google Scholar 

  • McCarty, R., Arp, V.: A new wide range of equation of state for helium. Adv. Cryog. Eng. 35, 1465–1475 (1990)

    CAS  Google Scholar 

  • Mehta, S., Danner, R.: An improved potential-theory method for predicting gas-mixture adsorption equilibria, Ind. Eng. Chem. Fundam. 24, 325–330 (1985)

    Article  CAS  Google Scholar 

  • Monsalvo, M.A., Shapiro, A.A.: Modeling adsorption of binary and ternary mixtures on microporous media. Fluid Phase Equilib. 254, 91–100 (2007)

    Article  CAS  Google Scholar 

  • Monsalvo, M.A., Shapiro, A.A.: Study of high-pressure adsorption from supercritical fluids by the potential theory. Fluid Phase Equilib. 283, 56–64 (2009)

    Article  CAS  Google Scholar 

  • Murata, K., El-Merraoui, M., Kaneko, K.: A new determination method of absolute adsorption isotherm of supercritical gases under high pressure with a special relevance to density-functional theory study. J. Chem. Phys. 114, 4196–4205 (2001)

    Article  CAS  Google Scholar 

  • Murata, K., Miyawaki, J., Kaneko, K.: A simple determination method of the absolute adsorbed amount for high pressure gas adsorption. Carbon 40, 425–428 (2002)

    Article  CAS  Google Scholar 

  • Myers, A.L., Monson, P.A.: Adsorption in Porous Materials at High Pressure:? Theory Exp. Langmuir 18, 10261–10273 (2002)

    Article  CAS  Google Scholar 

  • Neimark, A.V.: Potential theory of adsorption and adsorbate compressibility. J. Colloid Interface Sci. 165, 91–96 (1994)

    Article  CAS  Google Scholar 

  • Olney, T., Cann, N., Cooper, G., Brion, C.: Absolute scale determination for photoabsorption spectra and the calculation of molecular properties using dipole sum rules. Chem. Phys. 223, 59–98 (1997)

    Article  CAS  Google Scholar 

  • Ozawa, S., Kusumi, S., Ogino, Y.: Physical adsorption of gases at high pressure. IV. An improvement of the Dubinin–Astakhov adsorption equation. J. Colloid Interface Sci. 56, 83–91 (1976)

    Article  CAS  Google Scholar 

  • Polányi, M.: Über die Adsorption vom Standpunkt des dritten Wärmesatzes. Verh. Dtsch. Phys. Ges. 16, 1012 (1914)

    Google Scholar 

  • Polányi, M.: Adsorption von Gasen (Dampfen) durch ein festes nichtflüichtiges Adsorberis. Verh. Dtsch. Phys. Ges. 18, 55 (1916)

    Google Scholar 

  • Polányi, M.: Adsorption aus Lösungen beschränkt löslicher Stoffe. Z. Phys. 2, 111 (1920)

    Article  Google Scholar 

  • Polányi, M.: Theories of adsorption of gases. General survey and some additional remarks. Trans. Faraday Soc. 28, 316 (1932)

    Article  Google Scholar 

  • Prausnitz, J.M., Lichtenthaler, R.N., de Azevedo, E.G.: Molecular Thermodynamics of Fluid-Phase Equilibria. Prentice-Hall Inc., Englewood Cliffs, New Jersey (1986)

    Google Scholar 

  • Ross, D.J.K., Bustin, R.M.: Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs. Fuel 86, 2696–2706 (2007)

    Article  CAS  Google Scholar 

  • Rouquerol, F., Rouquerol, J., Sing, K.: Adsorption by Powders and Porous Solids. Academic Press, London, San Diego (1999)

    Google Scholar 

  • Ruthven, D.M., Farooq, S., Knaebel, K.S.: Pressure swing adsorption. VCH Publishers, New York (1994)

    Google Scholar 

  • Setzmann, U., Wagner, W.: A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 1000 MPa. J. Phys. Chem. Ref. Data 20, 1061–1151 (1991)

    Article  CAS  Google Scholar 

  • Sircar, S., Golden, T.C.: Pressure swing adsorption technology for hydrogen production. In: Liu, K., Song, C., Subramani, V. (eds) Hydrogen and Syngas Production and Purification Technologies, pp. 414-450. Wiley, Hoboken (2010)

    Google Scholar 

  • Sircar, S.: Gibbsian surface excess for gas adsorption: revisited. Ind. Eng. Chem. Res. 38, 3670–3682 (1999)

    Article  CAS  Google Scholar 

  • Stoeckli, F., Morel, D.: On the physical meaning of parameters E0 and beta in Dubinin theory. Chimia 34, 502–503 (1980)

    CAS  Google Scholar 

  • Talu, O.: Net adsorption of gas/vapor mixtures in microporous solids. J. Phys. Chem. C 117, 13059–13071 (2013)

    Article  CAS  Google Scholar 

  • Toth, J.: State equations of the solid-phase interface layers, Acta Chim. Acad. Sci. Hungar. 69, 311–328 (1971)

    CAS  Google Scholar 

  • Wood, G.O.: Affnity coeffcients of the Polanyi/Dubinin adsorption isotherm equations. A review with compilations and correlations. Carbon 39, 343–356 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

L. Hamon thanks Dr. G. Pirngruber for its advices. L. Hamon and G. De Weireld thank Ir P. Billemont and Dr. N. Heymans for their suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Hamon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamon, L., Chenoy, L. & De Weireld, G. Determination of absolute gas adsorption isotherms: simple method based on the potential theory for buoyancy effect correction of pure gas and gas mixtures adsorption. Adsorption 20, 397–408 (2014). https://doi.org/10.1007/s10450-013-9579-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9579-3

Keywords

Navigation