Skip to main content

Advertisement

Log in

Numerical study of nitrogen desorption by rapid oxygen purge for a medical oxygen concentrator

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Efficient desorption of selectively adsorbed N2 from air in a packed column of LiX zeolite by rapidly purging the adsorbent with an O2 enriched gas is an important element of a rapid cyclic pressure swing adsorption (RPSA) process used in the design of many medical oxygen concentrators (MOC). The amount of O2 purge gas used in the desorption process is a sensitive variable in determining the overall separation performance of a MOC unit. Various resistances like (a) adsorption kinetics, (b) column pressure drop, (c) non-isothermal column operation, (d) gas phase mass and thermal axial dispersions, and (e) gas-solid heat transfer kinetics determine the amount of purge gas required for efficient desorption of N2. The impacts of these variables on the purge efficiency were numerically simulated using a detailed mathematical model of non-isothermal, non-isobaric, and non-equilibrium desorption process in an adiabatic column.

The purge gas quantity required for a specific desorption duty (fraction of total N2 removed from a column) is minimum when the process is carried out under ideal, hypothetical conditions (isothermal, isobaric, and governed by local thermodynamic equilibrium). All above-listed non-idealities (a–e) can increase the purge gas quantity, thereby, lowering the efficiency of the desorption process compared to the ideal case. Items (a–c) are primarily responsible for inefficient desorption by purge, while gas phase mass and thermal axial dispersions do not affect the purge efficiency under the conditions of operation used in this study.

Smaller adsorbent particles can be used to reduce the negative effects of adsorption kinetics, especially for a fast desorption process, but increased column pressure drop adds to purge inefficiency. A particle size range of ∼300–500 μm is found to require a minimum purge gas amount for a given desorption duty. The purge gas requirement can be further reduced by employing a pancake column design (length to diameter ratio, L/D<0.2) which lowers the column pressure drop, but hydrodynamic inefficiencies (gas mal-distribution, particle agglomeration) may be introduced. Lower L/D also leads to a smaller fraction of the column volume that is free of N2 at the purge inlet end, which is required for maintaining product gas purity.

The simulated gas and solid temperature profiles inside the column at the end of the rapid desorption process show that a finite gas-solid heat transfer coefficient affects these profiles only in the purge gas entrance region of the column. The profiles in the balance of the column are nearly invariant to the values of that coefficient. Consequently, the gas-solid heat transfer resistance has a minimum influence on the overall integrated N2 desorption efficiency by O2 purge for the present application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alpay, E., Kenney, C.N., Scott, D.M.: Adsorbent particle size effects in the separation of air by rapid pressure swing adsorption. Chem. Eng. Sci. 49, 3059 (1994)

    Article  CAS  Google Scholar 

  • Basmadjian, D., Ha, K.D., Pan, C.Y.: Nonisothermal desorption by gas purge of single solutes in fixed-bed adsorbers. I. Equilibrium theory. Ind. Eng. Chem. Process Des. Dev. 14, 328 (1975a)

    Article  CAS  Google Scholar 

  • Basmadjian, D., Ha, K.D., Proulx, D.P.: Nonisothermal desorption by gas purge of single solutes from fixed-bed adsorbers. II. Experimental verification of equilibrium theory. Ind. Eng. Chem. Process Des. Dev. 14, 340 (1975b)

    Article  CAS  Google Scholar 

  • Chai, S.W., Kothare, M.V., Sircar, S.: Rapid pressure swing adsorption for reduction of bed size factor of a medical oxygen concentrator. Ind. Eng. Chem. Res. 50, 8703 (2011)

    Article  CAS  Google Scholar 

  • Dhingra, S.C., Gunn, D.J., Narayanan, P.V.: The analysis of heat transfer in fixed beds of particles at low and intermediate Reynolds numbers. Int. J. Heat Mass Transf. 27, 2377 (1984)

    Article  CAS  Google Scholar 

  • Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48, 89 (1952)

    CAS  Google Scholar 

  • Griffiths, G.W., Schiesser, W.E.: Traveling Wave Analysis of Partial Differential Equations: Numerical and Analytical Methods with Matlab and Maple. Academic Press, San Diego (2011). Chap. 2

    Google Scholar 

  • Jacob, P., Tondeur, D.: Non-Isothermal gas adsorption in fixed beds. II. Non-linear equilibrium theory and ‘Guillotine’ effect. Chem. Eng. J. 26, 41 (1983)

    Article  CAS  Google Scholar 

  • Kopaygorodsky, E.M., Guliants, V.V., Krantz, W.B.: Predictive dynamic model of single-stage ultra-rapid pressure swing adsorption. AIChE J. 50, 953 (2004)

    Article  CAS  Google Scholar 

  • Kumar, R., Sircar, S.: Adiabatic sorption of bulk single adsorbate from an inert gas—effect of gas-solid mass and heat transfer coefficients. Chem. Eng. Commun. 26, 319 (1984a)

    Article  CAS  Google Scholar 

  • Kumar, R., Sircar, S.: Adiabatic sorption of dilute single adsorbate from an inert gas—effect of gas-solid mass and heat transfer coefficients. Chem. Eng. Commun. 26, 339 (1984b)

    Article  CAS  Google Scholar 

  • Kunii, D., Suzuki, M.: Particle-to-fluid heat and mass transfer in packed beds of fine particles. Int. J. Heat Mass Transf. 10, 845 (1967)

    Article  CAS  Google Scholar 

  • Langer, G., Roethe, A., Roethe, K.P., Gelbin, D.: Heat and mass transfer in packed beds. III. Axial mass dispersion. Int. J. Heat Mass Transf. 21, 751–759 (1978)

    Article  CAS  Google Scholar 

  • Moulijn, J.A., Van Swaaij, W.P.M.: The correlation of axial dispersion data for beds of small particles. Chem. Eng. Sci. 31, 845 (1976)

    Article  CAS  Google Scholar 

  • Porter, K.E., Ali, Q.H., Hassan, A.O., Aryan, A.F.: Gas distribution in shallow packed beds. Ind. Eng. Chem. Res. 32, 2408 (1993)

    Article  CAS  Google Scholar 

  • Rama Rao, V., Farooq, S., Krantz, W.B.: Design of a two-step pulsed pressure swing adsorption based oxygen concentrator. AIChE J. 56, 354 (2010)

    Google Scholar 

  • Rege, S.U., Yang, R.T.: Limits for air separation by adsorption with LiX zeolite. Ind. Eng. Chem. Res. 36, 5358 (1997)

    Article  CAS  Google Scholar 

  • Rhee, H.K., Amundson, N.R.: An analysis of an adiabatic adsorption column. Part I. Theoretical development. Chem. Eng. J. 1, 241 (1970)

    Article  CAS  Google Scholar 

  • Rhee, H.K., Heerdt, E.D., Amundson, N.R.: An analysis of an adiabatic adsorption column. Part III. Adiabatic adsorption of two solutes. Chem. Eng. J. 3, 22 (1972)

    Article  CAS  Google Scholar 

  • Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)

    Google Scholar 

  • Santos, J.C., Portugal, A.F., Magalhaes, F.D., Mendes, A.: Simulation and optimization of small oxygen pressure swing adsorption units. Ind. Eng. Chem. Res. 43, 8328 (2004)

    Article  CAS  Google Scholar 

  • Santos, J.C., Portugal, A.F., Magalhaes, F.D., Mendes, A.: Optimization of medical PSA units for oxygen production. Ind. Eng. Chem. Res. 45, 1085 (2006)

    Article  CAS  Google Scholar 

  • Saucez, P., Schiesser, W.E., Wouwer, A.V.: Upwinding in the method of lines. Math. Comput. Simul. 56, 171 (2001)

    Article  Google Scholar 

  • Schiesser, W.E., Griffiths, G.W.: A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  • Schiesser, W.E.: PDE boundary conditions from minimum reduction of the PDE. Appl. Numer. Math. 20, 171 (1996)

    Article  Google Scholar 

  • Sircar, S.: Influence of gas-solid heat transfer on rapid PSA. Adsorption 11, 509 (2005)

    Article  Google Scholar 

  • Sircar, S., Golden, T.C.: Isothermal and isobaric desorption of carbon dioxide by purge. Ind. Eng. Chem. Res. 34, 2881 (1995)

    Article  CAS  Google Scholar 

  • Sircar, S., Kumar, R.: Equilibrium theory for adiabatic desorption of bulk binary gas mixtures by purge. Ind. Eng. Chem. Process Des. Dev. 24, 358 (1985)

    Article  CAS  Google Scholar 

  • Sircar, S., Myers, A.L.: Gas separation by zeolites. In: Auerbach, S.M., Carrado, K.A., Dutta, P.K. (eds.) Handbook of Zeolite Science and Technology, pp. 1063–1105. Dekker, New York (2003). Chap. 22

    Google Scholar 

  • Sircar, S., Rao, M.B., Golden, T.C.: Fractionation of air by zeolites. In: Dabrowski, A. (ed.) Adsorption and Its Applications in Industry and Environmental Protection, vol. 120, Part 1, pp. 395–423. Elsevier, New York (1999)

    Chapter  Google Scholar 

  • Skarstrom, C.W.: Method and apparatus for fractionating gaseous mixtures by adsorption. U.S. patent 2,944,627 (1960)

  • Todd, R.S., Webley, P.A.: Mass-transfer models for rapid pressure swing adsorption simulation. AIChE J. 52, 3126 (2006)

    Article  CAS  Google Scholar 

  • Wakao, N., Kaguei, S., Funazkri, T.: Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds. Chem. Eng. Sci. 34, 325 (1979)

    Article  CAS  Google Scholar 

  • Wicke, E.: Empirische and teoretische Untersuchungen der Sorptionsgeschwindigkeit von Gasen an porösen Stoffen I. Kolloid Z. 86, 167 (1939a)

    Article  CAS  Google Scholar 

  • Wicke, E.: Empirische and teoretische Untersuchungen der Sorptionsgeschwindigkeit von Gasen an porösen Stoffen II. Kolloid Z. 86, 295 (1939b)

    Article  CAS  Google Scholar 

  • Zhong, G.M., Rankin, P.J., Ackley, M.W.: High frequency PSA process for gas separation. U.S. patent 7,828,878 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivaji Sircar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chai, S.W., Kothare, M.V. & Sircar, S. Numerical study of nitrogen desorption by rapid oxygen purge for a medical oxygen concentrator. Adsorption 18, 87–102 (2012). https://doi.org/10.1007/s10450-012-9384-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-012-9384-4

Keywords

Navigation