Skip to main content

Advertisement

Log in

A review of boron enhanced nanoporous carbons for hydrogen adsorption: numerical perspective

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

We review the current achievements in the numerical studies of adsorption of molecular hydrogen in boron substituted nanoporous carbons. We show that the enhanced attraction of H2 by boron-substituted all-carbon structures may allow designing new porous materials with modulated capacity for hydrogen adsorption. Such new structures are characterized by modification of energy landscape of adsorbing surfaces extending beyond the vicinity of substituted atom over several graphene carbon sites, and show strong surface heterogeneity. Although the theoretical conception and description of boron-substituted carbons made a considerable progress during the last decade, the preparation of these materials involves tedious procedures and still needs to be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernard, P., Chahine, R.: Storage of hydrogen by physisorption on carbon and nanostructured materials. Scr. Mater. 56, 803–808 (2007)

    Article  Google Scholar 

  • Bhatia, S.K., Myers, A.L.: Optimal conditions for adsorptive storage. Langmuir 22, 1688–1700 (2006)

    Article  CAS  Google Scholar 

  • Borowiak-Palen, E., Pichler, T., Fuentes, G.G., Graff, A., Kalenczuk, R.J., Knupfer, M., et al.: Efficient production of B-substituted single wall carbon nanotubes. Chem. Phys. Lett. 378, 516–520 (2003)

    Article  CAS  Google Scholar 

  • Carroll, D.L., Redlich, P., Blase, X., Charlier, J.C., Curran, S., Ajayan, P.M., Roth, S., Ruhle, M.: Effects of nanodomain formation on the electronic structure of doped carbon nanotubes. Phys. Rev. Lett. 81, 2332–2335 (1998)

    Article  CAS  Google Scholar 

  • Ceragioli, H.J., Peterlevitz, C., Quispe, J.C.R., Larena, A., Pasquetto, M.P., Sampaio, M.P., Baranauskas, V.: Synthesis and characterization of boron-doped carbon nanotubes. J. Phys. 100, 052029 (2008)

    Google Scholar 

  • Che, G., Lakshmi, B.B., Martin, C.R., Fisher, E.R., Martin, C.R., Ruoff, R.A.: Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method. Chem. Mater. 10, 260–267 (1998)

    Article  CAS  Google Scholar 

  • Chen, J., Wu, F.: Review of hydrogen storage in inorganic fullerene-like nanotubes. Appl. Phys. A 78, 989 (2004)

    Article  CAS  Google Scholar 

  • Chen, G.-X., Zhang, J.-M., Wang, D.-D., Xu, K.-W.: First-principles study of palladium atom adsorption on the boron- or nitrogen-doped carbon nanotubes. Physica B 404, 4173 (2009)

    Article  CAS  Google Scholar 

  • Chung, T.C.M., Jeong, Y., Chen, Q., Kleinhammes, A., Wu, Y.: Synthesis of microporous boron-substituted carbon (B/C) materials using polymeric precursors for hydrogen physisorption. J. Am. Chem. Soc. 130, 6668–6669 (2008)

    Article  CAS  Google Scholar 

  • Collins, D.J., Zhou, H.C.: Hydrogen storage in metal–organic frameworks. J. Mater. Chem. 17, 3154 (2007)

    Article  CAS  Google Scholar 

  • Endo, M., Hayashi, T., Hong, S.-H., Enoki, J.T., Dresselhaus, M.S.: Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite. J. Appl. Phys. 90, 5670–5674 (2001)

    Article  CAS  Google Scholar 

  • Farha, O.K., Spokoyny, A.M., Mulfort, K.L., Hawthorne, M.F., Mirkin, C.A., Hupp, J.T.: Synthesis and hydrogen sorption properties of carborane based metal-organic framework materials. J. Am. Chem. Soc. 129, 12680–12681 (2007)

    Article  CAS  Google Scholar 

  • Ferro, Y., Marinelli, F., Allouche, A., Broset, C.: Density functional theory investigation of H adsorption on the basal plane of boron-doped graphite. J. Chem. Phys. 118, 5650 (2003)

    Article  CAS  Google Scholar 

  • Ferro, Y., Marinelli, F., Jelea, A., Allouche, A.: Adsorption, diffusion, and recombination of hydrogen on pure and boron-doped graphite surfaces. J. Chem. Phys. 120, 11882 (2004a)

    Article  CAS  Google Scholar 

  • Ferro, Y., Brosset, C., Allouche, A.: Quantum study of hydrogen interaction with plasma-facing graphite and boron doped graphite surfaces. Phys. Scr. T 108, 76 (2004b)

    Article  Google Scholar 

  • Firlej, L., Roszak, Sz., Kuchta, B., Pfeifer, P., Wexler, C.: Enhanced hydrogen adsorption in boron substituted carbon nanospaces. J. Chem. Phys. 131, 164702 (2009)

    Article  CAS  Google Scholar 

  • Golberg, D., Bando, Y., Han, W., Kurashima, K., Sato, T.: Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction. Chem. Phys. Lett. 308, 337–342 (1999)

    Article  CAS  Google Scholar 

  • Hach, C.T., Jones, L.E., Crossland, C., Thrower, P.A.: An investigation of vapor deposited boron rich carbon—a novel graphite-like material—part I: the structure of BC x (C6B) thin films. Carbon 37, 221–230 (1999)

    Article  CAS  Google Scholar 

  • Han, W., Bando, Y., Kurashima, K., Sato, T.: Boron-doped carbon nanotubes prepared through a substitution reaction. Chem. Phys. Lett. 299, 368–373 (1999)

    Article  CAS  Google Scholar 

  • Han, S.S., Furukawa, H., Yaghi, O.M., Goddard, W.A. III: Covalent organic frameworks as exceptional hydrogen storage materials. J. Am. Chem. Soc. 130, 11580–11581 (2008)

    Article  CAS  Google Scholar 

  • Hu, Q., Wu, Q., Ma, Y., Zhang, L., Liu, Z., He, J., Sun, H., Wang, H.-T., Tian, Y.: First-principles studies of structural and electronic properties of hexagonal BC5. Phys. Rev. B 73, 214116 (2006)

    Article  Google Scholar 

  • Kim, Y.-H., Zhao, Y., Williamson, A., Heben, M.J., Zhang, S.B.: Nondissociative adsorption of H2 molecules in light-element doped fullerenes. Phys. Rev. Lett. 96, 016102 (2006)

    Article  Google Scholar 

  • Klontzas, E., Tylianakis, E., Froudakis, G.E.: Designing 3D COFs with enhanced hydrogen storage capacity. Nano Lett. 10, 452–454 (2010)

    Article  CAS  Google Scholar 

  • Kouvetakis, J., Kaner, R.B., Sattler, M.L., Bartlett, N.: A novel graphite-like material of composition BC3, and nitrogen–carbon graphites. J. Chem. Soc., Chem. Commun. 1986, 1758 (1986)

    Article  Google Scholar 

  • Kowalczyk, P., Gauden, P.A., Terzyk, A.P.: Cryogenic separation of hydrogen isotopes in single-walled carbon and coron-nitride nanotubes : insight into mechanism of equilibrium quantum sieving in quasi-one-dimensional pores. J. Phys. Chem. B 112, 8275–8284 (2008)

    Article  CAS  Google Scholar 

  • Krishnan, K.M.: Structure of newly synthesized BC3 films. Appl. Phys. Lett. 58, 1857 (1991)

    Article  CAS  Google Scholar 

  • Kuchta, B., Firlej, L., Wexler, C., Pfeifer, P.: Influence of structural heterogeneity of nano-porous sorbent walls on hydrogen storage. Appl. Surf. Sci. (2010a). doi:10.1016/j.apsusc.2009.12.116

    Google Scholar 

  • Kuchta, B., Firlej, L., Cepel, R., Pfeifer, P., Wexler, C.: Structural and energetic factors in designing a nanoporous sorbent for hydrogen storage. Colloids Surf. A 357, 61–66 (2010b)

    Article  CAS  Google Scholar 

  • Kuchta, B., Firlej, L., Pfeifer, P., Wexler, C.: Numerical estimation of hydrogen storage limits in carbon-based nanospaces. Carbon 48, 223–231 (2010c)

    Article  CAS  Google Scholar 

  • Kyotani, T., Tsai, L.F., Tomita, A.: Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film. Chem. Mater. 8, 2109–2113 (1996)

    Article  CAS  Google Scholar 

  • Lee, Y., Han, D.-Y., Lee, D., Woo, A.J., Lee, S.H., Lee, D., Kim, Y.K.: 11B NMR of boron-doped graphite as the negative electrode of a lithium secondary battery. Carbon 40, 403–408 (2002)

    Article  CAS  Google Scholar 

  • Li, Z., Zhu, G., Lu, G., Qiu, S., Yao, X.: Ammonia borane confined by a metal-organic framework for chemical hydrogen storage: enhancing kinetics and eliminating ammonia. J. Am. Chem. Soc. 132, 1490–1491 (2010)

    Article  CAS  Google Scholar 

  • Lochan, R.C., Head-Gordon, M.: Computational studies of molecular binding affinities: the role of dispersion forces, electrostatics, and orbital interactions. Phys. Chem. Chem. Phys. 8, 1357 (2006)

    Article  CAS  Google Scholar 

  • Lowell, C.E.: Solid solution of boron in graphite. J. Am. Ceram. Soc. 50, 142–144 (1966)

    Article  Google Scholar 

  • Magri, R.: Ordering in B x C1−x compounds with the graphite structure. Phys. Rev. B 49, 2805–2815 (1994)

    Article  CAS  Google Scholar 

  • Martin, C.R.: Nanomaterials: a membrane-based synthetic approach. Science 266, 1961–1966 (1994)

    Article  CAS  Google Scholar 

  • McGuire, K., Gothard, N., Gai, P.L., Dresselhaus, M.S., Sumanasekera, G., Rao, A.M.: Synthesis and Raman characterization of boron-doped single-walled carbon nanotubes. Carbon 43, 219–227 (2005)

    Article  CAS  Google Scholar 

  • Miwa, R.H., Martins, T.B., Fazzio, A.: Hydrogen adsorption on boron doped grapheme: an ab initio study. Nanotechnology 19, 155708 (2008)

    Article  Google Scholar 

  • Møller, C., Plesset, M.S.: Note on an approximation treatment for many-electron systems. Phys. Rev. 46, 618 (1934)

    Article  Google Scholar 

  • Naeni, Z.G., Way, B.M., Dahn, J.R., Irwin, J.C.: Raman scattering from boron-substituted carbon films. Phys. Rev. B 54, 144–150 (1996)

    Article  Google Scholar 

  • Ni, M.Y., Zeng, Z., Ju, X.: First-principles study of metal atom adsorption on the boron. Microelectron. J. 40, 863 (2009)

    Article  CAS  Google Scholar 

  • Parr, R.G., Yang, W.: Density-functional theory of atoms and molecules. Oxford University Press, New York (1994)

    Google Scholar 

  • Radovic, L.R., Karra, M., Skokova, K., Thrower, P.: The role of substitutional boron in carbon oxidation. Carbon 36, 1841–1854 (1998)

    Article  CAS  Google Scholar 

  • Redfern, P.C., Gruen, D., Curtiss, L.A.: Effect of boron substitution on the electronic structure of nanographene and its relevance to the thermoelectric transport properties in nanocarbon ensembles. Chem. Phys. Lett. 471, 264–268 (2009)

    Article  CAS  Google Scholar 

  • Saloni, J., Kolodziejczyk, W., Roszak, S., Majumdar, D., Hill, G. Jr., Leszczynski, J.: Local and global electronic effects in single and double boron-doped carbon nanotubes. J. Phys. Chem. C 114, 1528 (2010)

    Article  CAS  Google Scholar 

  • Sankaran, M., Viswanathan, B.: The role of heteroatoms in carbon nanotubes for hydrogen storage. Carbon 44, 2816 (2006)

    Article  CAS  Google Scholar 

  • Sankaran, M., Viswanathan, B.: Hydrogen storage in boron substituted carbon nanotubes. Carbon 45, 1628–1635 (2007)

    Article  CAS  Google Scholar 

  • Sankaran, M., Muthukumar, K., Viswanathan, B.: Boron-substituted fullerens—can they be on the options for hydrogen storage? Fuller. Nanotub. Carbon Nanostruct. 13, 43 (2005)

    Article  CAS  Google Scholar 

  • Sankaran, M., Viswanathan, B., Srinivasa Murthy, S.: Boron substituted carbon nanotubes—how appropriate are they for hydrogen storage? Int. J. Hydrog. Energy 33, 393 (2008)

    Article  CAS  Google Scholar 

  • Schleyer, R.V.P. (ed.): Encyclopedia of Computational Chemistry. Wiley-Interscience, New York (1998)

    Google Scholar 

  • Serin, V., Brydson, R., Scott, A., Kihn, Y., Abidate, O., Maquin, B., Derre, A.: Evidence for the solubility of boron in graphite by electron energy loss spectroscopy. Carbon 38, 547 (2000)

    Article  CAS  Google Scholar 

  • Shirasaki, T., Derre, A., Menetrier, M., Tressaud, A., Flandrois, S.: Synthesis and characterization of boron-substituted carbons. Carbon 38, 1461–1467 (2000)

    Article  CAS  Google Scholar 

  • Sun, H., Ribeiro, F.J., Li, J.-L., Roundy, D., Cohen, M.L., Louie, S.G.: Ab initio pseudopotential studies of equilibrium lattice structures and phonon modes of bulk BC3. Phys. Rev. B 69, 024110 (2004)

    Article  Google Scholar 

  • Tomanek, D., Wentzcovitch, R.M., Louie, S.G., Cohen, M.L.: Calculation of electronic and structural properties of BC3. Phys. Rev. B 37, 3134 (1988)

    Article  CAS  Google Scholar 

  • Viswanathan, B., Sankaran, M.: Hetero-atoms as activation centers for hydrogen absorption in carbon nanotubes. Diam. Relat. Mater. 18, 429 (2008)

    Article  Google Scholar 

  • Wang, Q., Chen, L.Q., Annett, J.F.: Stability and charge transfer of C3B ordered structures. Phys. Rev. B 54, R2271 (1996)

    Article  CAS  Google Scholar 

  • Wang, Q., Chen, L.Q., Annett, J.F.: Ab initio calculation of structural properties of C3B and C5B compounds. Phys. Rev. B 55, 8 (1997)

    Article  CAS  Google Scholar 

  • Wei, B., Spolenak, R., Kohler-Redlich, P., Ruhle, M., Arzt, E.: Electrical transport in pure and boron-doped carbon nanotubes. Appl. Phys. Lett. 74, 3149–3151 (1999)

    Article  CAS  Google Scholar 

  • Wu, X., Radovic, L.R.: Ab initio molecular orbital study on the electronic structures and reactivity of boron-substituted carbon. J. Phys. Chem. A 108, 9180–9187 (2004)

    Article  CAS  Google Scholar 

  • Wu, X., Gao, Y., Zeng, X.C.: Hydrogen storage in pillared Li-dispersed boron carbide nanotubes. J. Phys. Chem. C 112, 8458 (2008)

    Article  CAS  Google Scholar 

  • Yanagisawa, H., Tanaka, T., Ishida, Y., Matsue, M., Rokuta, E., Otani, S., Oshima, C.: Phonon dispersion curves of a BC3 honeycomb epitaxial sheet. Phys. Rev. Lett. 93, 177003 (2004)

    Article  CAS  Google Scholar 

  • Zhang, C., Alavi, A.: Hydrogen absorption in bulk BC3: a first-principles study. J. Chem. Phys. 127, 214702 (2007)

    Article  Google Scholar 

  • Zhao, Y., Lusk, M.T., Dillon, A.C., Heben, M.J., Zhang, S.B.: Boron-based organometallic nanostructures: hydrogen storage properties and structure stability. Nano Lett. 8, 158 (2008)

    Article  Google Scholar 

  • Zheng, X.M., Zeng, J.: Hydrogen chemisorption on a boron-terminated diamond (100) surface: an ab initio study. Surf. Sci. 416, 472 (1998)

    Article  CAS  Google Scholar 

  • Zhou, Y.G., Zu, X.T., Gao, F., Nie, J.L., Xiao, H.Y.: Adsorption of hydrogen on boron-doped graphene: a first-principles prediction. J. Appl. Phys. 105, 014309 (2009)

    Article  Google Scholar 

  • Zhu, Z.H., Lu, G.Q., Hatori, H.: New insight into the interaction of hydrogen atoms with boron-substituted carbon. J. Phys. Chem. B 110, 1249 (2006)

    Article  CAS  Google Scholar 

  • Zou, X., Cha, M.-H., Kim, S., Nguyen, M.C., Zhou, G., Duan, W., Ihm, J.: Hydrogen storage in Ca-decorated, B-substituted metal organic framework. Int. J. Hydrog. Energy 35, 198–203 (2010)

    Article  CAS  Google Scholar 

  • Zubizarreta, L., Gomez, E.I., Arenillas, A., Ania, C.O., Parra, J.B., Pis, J.J.: H2 storage in carbon materials. Adsorption 14, 557–566 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kuchta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuchta, B., Firlej, L., Roszak, S. et al. A review of boron enhanced nanoporous carbons for hydrogen adsorption: numerical perspective. Adsorption 16, 413–421 (2010). https://doi.org/10.1007/s10450-010-9235-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-010-9235-0

Keywords

Navigation