Skip to main content
Log in

Reduced basis methods with adaptive snapshot computations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We use asymptotically optimal adaptive numerical methods (here specifically a wavelet scheme) for snapshot computations within the offline phase of the Reduced Basis Method (RBM). The resulting discretizations for each snapshot (i.e., parameter-dependent) do not permit the standard RB ‘truth space’, but allow for error estimation of the RB approximation with respect to the exact solution of the considered parameterized partial differential equation. The residual-based a posteriori error estimators are computed by an adaptive dual wavelet expansion, which allows us to compute a surrogate of the dual norm of the residual. The resulting adaptive RBM is analyzed. We show the convergence of the resulting adaptive greedy method. Numerical experiments for stationary and instationary problems underline the potential of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdulle, A., Mech, Y.B.: Adaptive reduced basis finite element heterogeneous multiscale method. Comput. Methods Appl. Engrg. 257, 203–220 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ali, M., Urban, K.: Reduced basis exact error estimates with wavelets. In: Karasözen, B., Manguoğlu, M., Tezer-Sezgin, M., Göktepe, S., Uğur, Ö. (eds.) Numerical Mathematics and Advanced Applications – ENUMATH 2015, volume 112 of Lecture Notes in Computational Science and Engineering, page to appear. Springer, Heidelberg (2016)

  3. Babuška, I.: Error-bounds for finite element method. Numer. Math. 16, 322–333 (1970/1971)

  4. Ballarin, F., Manzoni, A., Quarteroni, A., Rozza, G.: Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations. Internat. J. Numer. Methods Engrg. 102(5), 1136–1161 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Paris, Ser. I 339(9), 667–672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Binev, P., Cohen, A., Dahmen, W., DeVore, R.A., Petrova, G., Wojtaszczyk, P.: Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43(3), 1457–1472 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bui-Thanh, T., Willcox, K., Ghattas, O.: Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J. Sci Comput. 30(6), 3270–3288 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carlberg, K.: Adaptive h-refinement for reduced-order models. Int. J. Numer. Meth. Engng. 102, 1192–1210 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carlberg, K., Bou-Mosleh, C., Farhat, C.: Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations. Internat. J. Numer. Methods Engrg. 86(2), 155–181 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chegini, N.G., Stevenson, R.P.: Adaptive wavelet schemes for parabolic problems: sparse matrices and numerical results. SIAM J. Numer. Anal. 49(1), 182–212 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cohen, A., Dahmen, W., DeVore, R.A.: Adaptive wavelet methods for elliptic operator equations: convergence rates. Math. Comput. 70(233), 27–75 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cohen, A., Dahmen, W., DeVore, R.A.: Adaptive wavelet methods II - beyond the elliptic case. Found Comput. Math. 2, 203–245 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cohen, A., Dahmen, W., Welper, G.: Adaptivity and variational stabilization for convection-diffusion equations. ESAIM Math. Model. Numer. Anal. 46(5), 1247–1273 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dahmen, W., Huang, C., Schwab, C., Welper, G.: Adaptive Petrov-Galerkin methods for first order transport equations. SIAM J. Numer. Anal. 50(5), 2420–2445 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dahmen, W., Plesken, C., Welper, G.: Double greedy algorithms: reduced basis methods for transport dominated problems. ESAIM Math. Model. Numer. Anal. 48(3), 623–663 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology Evolution Problems I, vol. 5. Springer, Berlin (1992)

  17. Dijkema, T.: Adaptive Tensor Product Wavelet Methods for Solving PDEs. PhD thesis, Universiteit Utrecht (2009)

    MATH  Google Scholar 

  18. Drohmann, M., Haasdonk, B., Ohlberger, M.: Adaptive reduced basis methods for nonlinear convection-diffusion equations. In: Finite volumes for complex applications. VI. Problems & perspectives, volume 4 of Springer Proc. Math, pp 369–377. Springer, Heidelberg (2011)

  19. Gantumur, T., Harbrecht, H., Stevenson, R.P.: An optimal adaptive wavelet method without coarsening of the iterands. Math. Comput. 76(258), 615–629 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grepl, M.A., Patera, A.T.: A posteriori error bounds for reduced-basis approximations of parameterized parabolic partial differential equations. ESAIM Math. Model. Numer Anal. 39(1), 157–181 (2005)

    Article  MATH  Google Scholar 

  21. Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parameterized linear evolution equations. ESAIM Math. Model. Numer Anal. 42, 277–302 (2008)

    Article  MATH  Google Scholar 

  22. Hesthaven, J.S., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer Briefs in Mathematics. Springer, Cham (2016)

    Book  MATH  Google Scholar 

  23. Hesthaven, J.S., Stamm, B., Zhang, S.: Efficient greedy algorithms for high-dimensional parameter spaces with applications to empirical interpolation and reduced basis methods. ESAIM Math. Model. Numer. Anal. 48(1), 259–283 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Huynh, D.B.P., Rozza, G., Sen, S., Patera, A.T.: A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Math. Acad. Sci. Paris 345(8), 473–478 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kestler, S.: On the adaptive tensor product wavelet Galerkin method with applications in finance. PhD thesis University of Ulm (2013)

  26. Kestler, S., Steih, K., Urban, K.: An efficient space-time wavelet Galerkin method for time-periodic parabolic partial differential equations, Math.Comput. to appear (2015)

  27. Kestler, S., Stevenson, R.P.: An efficient approximate residual evaluation in the adaptive tensor product wavelet method. J. Sci. Comp. (2013)

  28. Kestler, S., Stevenson, R.P.: Fast evaluation of system matrices w.r.t. multi-tree collections of tensor product refinable basis functions. J. Comput. Appl Math. 260, 103–116 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Maday, Y., Stamm, B.: Locally adaptive greedy approximations for anisotropic parameter reduced basis spaces. SIAM J. Sci Comput. 35(6), A2417–A2441 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Neċas, J.: Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle. Ann. Scuola Norm. Sup, Pisa (3) 16, 305–326 (1962)

    MathSciNet  MATH  Google Scholar 

  31. Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: Multiscale, nonlinear and adaptive approximation, pp 409–542. Springer, Berlin (2009)

  32. Ohlberger, M., Schindler, F.: A-posteriori error estimates for the localized reduced basis multi-scale method. In: Finite volumes for complex applications. VII. Methods and theoretical aspects, volume 77 of Springer Proc. Math. Stat., pp. 421–429. Springer, Cham (2014)

  33. Ohlberger, M., Schindler, F.: Error control for the localized reduced basis multiscale method with adaptive on-line enrichment. SIAM J. Sci. Comput. 37(6), A2865–A2895 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations, vol. 92. Springer, Cham (2016)

  35. Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Meth. Eng. 15(3), 229–275 (2008)

    Article  MATH  Google Scholar 

  36. Rozza, G., Veroy, K.: On the stability of the reduced basis method for Stokes equations in parametrized domains. Comput. Methods Appl. Mech. Engrg. 196(7), 1244–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rupp, A.: High Dimensional Wavelet Methods for Structures Financial Products. University of Ulm, PhD thesis (2013)

    Google Scholar 

  38. Schwab, C., Stevenson, R.P.: Space-time adaptive wavelet methods for parabolic evolution problems. Math. Comput. 78(267), 1293–1318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Steih, K.: Reduced Basis Methods for Time-Periodic Parametric Partial Differential Equations. University of Ulm, PhD thesis (2014)

    Google Scholar 

  40. Stevenson, R.P.: Adaptive wavelet methods for solving operator equations: An overview. In: DeVore, R.A., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation, pp. 543–598. Springer (Berlin) (2009)

  41. Urban, K.: Wavelet methods for elliptic partial differential equations Oxford University Press (2009)

  42. Urban, K., Volkwein, S., Zeeb. O.: Greedy sampling using nonlinear optimization. In: Quarteroni, A., Rozza, G. (eds.) Reduced Order Methods for modeling and computational reduction, pp. 137–157. Springer Switzerland (2014)

  43. Xu, J., Zikatanov, L.: Some observations on Babuska and Brezzi theories. Numer. Math. 94(1), 195–202 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yano, M.: A Reduced Basis Method with Exact-Solution Certificates for Symmetric Coercive Equations. Comp. Meth. Appl. Mech. Engin. 287, 290–309 (2015)

    Article  MathSciNet  Google Scholar 

  45. Yano, M.: A minimum-residual mixed reduced basis method: Exact residual certification and simultaneous finite-element reduced-basis refinement. Math. Model. Numer. Anal. to appear (2015)

  46. Yano, M.: A reduced basis method for coercive equations with an exact solution certificate and spatio-parameter adaptivity: Energy-Norm and Output Error Bounds. Preprint, Univ.of Toronto, submitted (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Urban.

Additional information

Communicated by: Helge Holden

This work has partly been supported by the Deutsche Forschungsgemeinschaft (DFG) within the Research Training Group (Graduiertenkolleg) GrK1100 Modellierung, Analyse und Simulation in der Wirtschaftsmathematik at Ulm University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M., Steih, K. & Urban, K. Reduced basis methods with adaptive snapshot computations. Adv Comput Math 43, 257–294 (2017). https://doi.org/10.1007/s10444-016-9485-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-016-9485-9

Keywords

Mathematics Subject Classification (2010)

Navigation