Skip to main content
Log in

Sheet Molding Compound Automotive Component Reliability Using a Micromechanical Damage Approach

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The mastering of product reliability is essential for industrial competitiveness. If for metallic materials the topic is well-known, especially in automotive industry, Original Equipment Manufacturers are expecting strong support of their suppliers to full-fill the lack data. This paper presents a new original approach, using a micromechanical based on damage model to address the problem of reliability of Sheet Molding Compound (SMC) components. The first part demonstrates the inadequacy of the standard method of reliability on SMC material through its application on the new Peugeot 3008. In fact, the very flat S-N curve of SMC, and in general, composite materials is not appropriate for acceleration effect. The proposed model correlates the stress, damage and strength with both cycle number and slamming velocity. It emphasizes the relation between the effective distribution with the slamming velocity effect. Then, a new reliability approach based on a micromechanical fatigue/damage model was developed. The definition of new probability distributions based on damage was necessary to apply properly the stress-resistance approach. It allows taking into account the velocity effect by switching in damage space. Finally, applying this new methodology on the Peugeot 3008, leads to the definition of the optimal validation laboratory tests to ensure the reliability. Indeed, the required number of cycles to ensure reliability has been reduced significantly. Micromechanical damage reliability approach could be an efficient way to ensure the reliability of short fiber reinforcement composite components used in industrial context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Komeili, M., Milani, A.S.: The effect of meso-level uncertainties on the mechanical response of woven fabric composites under axial loading. Comput. Struct. 90–91, 163–171 (2012). https://doi.org/10.1016/j.compstruc.2011.09.001

    Article  Google Scholar 

  2. Zhu, T.: A reliability-based safety factor for aircraft composite structures. Comput. Struct. 48(4), 745–748 (1993). https://doi.org/10.1016/0045-7949(93)90269-J

    Article  Google Scholar 

  3. British Standards Institution BS 4994: 1987 Specification for design and construction of vessels and tanks in reinforced plastics; 1987

  4. Papadopoulos, V., Papadrakakis, M.: Stochastic finite element-based reliability analysis of space frames. Probab. Eng. Mech. 13(1), 53–65 (1998)

    Article  Google Scholar 

  5. Philippidis, T.P., Lekou, D.J.: Probabilistic failure prediction for FRP composites. Compos. Sci. Technol. 58(12), 1973–1982 (1998)

    Article  CAS  Google Scholar 

  6. Gosling, P.D., Faimun, P.O.: A high-fidelity first-order reliability analysis for shear deformable laminated composite plates. Compos. Struct. 115, 12–28 (2014)

    Article  Google Scholar 

  7. Llorca, J., González, C., Molina-Aldareguía, J.M., Segurado, J., Seltzer, R., Sket, F., Rodríguez, M., Sádaba, S., Muñoz, R., Canal, L.P.: Multiscale modeling of composite materials: a roadmap towards virtual testing. Adv. Mater. 23(44), 5130–5147 (2011)

    Article  CAS  Google Scholar 

  8. Charmpis, D.C., Schuëller, G.I., Pellissetti, M.F.: The need for linking micromechanics of materials with stochastic finite elements: a challenge for materials science. Comput. Mater. Sci. 41(1), 27–37 (2007)

    Article  Google Scholar 

  9. G. Lamanna , A. Ceparano, L. Sartore. Reliability of Sheet Moulding Composites (SMC) for the Automotive Industry. Times of Polymers (TOP) and Composites 2014 AIP Conf. Proc. 1599, 338–341 (2014); https://doi.org/10.1063/1.4876847 © 2014 AIP Publishing LLC 978–0–7354-1233-0/$30.00

  10. B. Hangs, D. Bücheler, M. Karcher, F. Henning, High-volume production of structural automobile parts: comparative study of relevant com

  11. M. Bruderick, D. Denton, M. Shinedling, Applications of Carbon Fiber SMC for the Dodge Viper, Proceedings to Automotive Composites Conference & Exhibition (ACCE), Detroit (2013)

  12. Jansen, C.: Isogrid-stiffened automotive suspension control arm. JEC Compos. Mag. 6(82), 38 (2013)

    Google Scholar 

  13. M. Shirinbayan, J. Fitoussi, N. Abbasnezhad , F. Meraghni , B. Surowiec , A. Tcharkhtchi, Mechanical characterization of a Low Density Sheet Molding Compound (LD-SMC): Multi-scale damage analysis and strain rate effect. Composites Part B 131 (2017)

  14. Bernasconi, A., Cosmi, F., Dreossi, D.: Local anisotropy analysis of injection moulded fibre reinforced polymer composites. Compos. Sci. Technol. 68, 2574–2581 (2008)

    Article  CAS  Google Scholar 

  15. L. Verger: "Exigences des CPPRs DCHM relatives à la Sûreté de Fonctionnement, Safety et Durabilité", PSA R&D direction, reference 01354_11_00248, pp. 1–19, January 30th 2012

  16. P. Beaumont: "Optimisation des plans d’essais accélérés. Application à la tenue en fatigue de pieces métalliques de liason au sol", Chapter 4, pp. 61–98, PhD, February 5th 2014

  17. B. Klimkeit: "Etude expérimentale et modélisation du comportement en fatigue multiaxiale d’un polymère renforcé pour application automobile", Chapter 6, pp. 105–146, PhD, december 3th 2009

  18. Laribi, M.A., Tamboura, S., Fitoussi, J., Tié Bi, R., Tcharkhtchi, A., Dali, H.B.: Fast fatigue life prediction of short fiber reinforced composites using a new hybrid damage approach: application to SMC. Compos. Part B. 139(15), 155–162 (2018). https://doi.org/10.1016/j.compositesb.2017.11.063

    Article  CAS  Google Scholar 

  19. V. Ozouf: Fiabilité des systèmes, Partie N°5.3, pp. 96–109, Europe Qualité Services, EQS, Revision 3.2

  20. J-C. Ligeron: Cours de fiabilité en mécanique, Chapter 3, pp. 81–82, IMdR M2OS, July 16th 2009

  21. Fitoussi, J., Guo, G.B.D.: A statistical micromechanical model of anisotropic damage for S.M.C. composites. Compos. Sci. Technol. 58, 759–763 (1998)

    Article  CAS  Google Scholar 

  22. Tamboura, S., Sidhom, H., Baptiste, H., Fitoussi, J.: Evaluation de la tenue en fatigue du composite SMC R42. Mater. Tech. 89, 3–4 (2001)

    Article  CAS  Google Scholar 

  23. Fitoussi, J., Bourgeois, N., Guo, G., Baptiste, D.: Prediction of the anisotropic damaged behavior of composite materials: introduction of multilocal failure criteria in a micro-macro relationship. Comput. Mater. Sci. 5(1), 87–100

  24. Shirinbayan, M., Fitoussi, J., Meraghni, F., Surowieck, B., Laribi, M.A., Tcharkhtchi, A.: Coupled effect of loading frequency and amplitude on the fatigue behavior of advanced sheet molding compound (A-SMC). J. Reinf. Plast. Compos. (2016)

  25. Jendli, Z., Meraghni, F., Fitoussi, J., Baptiste, D.: Multi-scales modelling of dynamic behaviour for discontinuous fibre SMC composites. Compos. Sci. Technol. 69(1), 97–103 (2009)

    Article  CAS  Google Scholar 

  26. Shirinbayan, M., Fitoussi, J., Meraghni, F., Surowiec, B., Bocquet, M., Tcharkhtchi, A.: High strain rate visco-damageable behavior of advanced sheet molding compound (A-SMC) under tension. Compos. Part B Eng. 82, 30–41 (2015). https://doi.org/10.1016/j.compositesb.2015.07.010

    Article  CAS  Google Scholar 

  27. Tamboura, S., Laribi, M.A., Fitoussi, J., Shirinbayan, M., Tie Bi, R., Tcharkhtchi, A., Ben Dali, H.: Damage and fatigue life prediction of short fiber reinforced composites submitted to variable temperature loading: application to sheet molding compound composites. Int. J. Fatigue. 138, 105676 (2020)

    Article  Google Scholar 

  28. Laribi, M.A., Tamboura, S., Fitoussi, J., Shirinbayan, M., Tie Bi, R., Tcharkhtchi, A., Ben Dali, H.: Microstructure dependent fatigue life prediction for short fibers reinforced composites: application to sheet molding compounds. Int. J. Fatigue. 138, 105731 (2020)

    Article  Google Scholar 

  29. Tamboura, S., Ayari, H., Shirinbayan, M., Laribi, M.-A., Bendaly, H., Sidhom, H., Tcharkhtchi, A., Fitoussi, J.: Experimental and numerical multi-scale approach for Sheet-Molding-Compound Composites fatigue prediction based on fiber-matrix interface cyclic damage. Int. J. Fatigue. 135, 105526 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

Authors address a strong acknowledgment to E. FEIGE and Y. HAMOY, from PSA, for the data provided. Their comments and advices were also very useful.

We are grateful to Mr. OZOUF for teaching and advices on the general topic of reliability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Laribi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laribi, M.A., TieBi, R., Tamboura, S. et al. Sheet Molding Compound Automotive Component Reliability Using a Micromechanical Damage Approach. Appl Compos Mater 27, 693–715 (2020). https://doi.org/10.1007/s10443-020-09831-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-020-09831-5

Keywords

Navigation