Skip to main content
Log in

Plasma Polypyrrole Coated Hybrid Composites with Improved Mechanical and Electrical Properties for Aerospace Applications

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

This paper deals with the dielectric barrier discharge assisted continuous plasma polypyrrole deposition on CNT-grafted carbon fibers for conductive composite applications. The simultaneous effects of three controllable factors have been studied on the electrical resistivity (ER) of these two material systems based on multivariate experimental design methodology. A posterior probability referring to Benjamini-Hochberg (BH) false discovery rate was explored as multiple testing corrections of the t-test p values. BH significance threshold of 0.05 was produced truly statistically significant coefficients to describe ER of two material systems. A group of plasma modified samples was chosen to be used for composite manufacturing to drive an assessment of interlaminar shear properties under static loading. Transversal and longitudinal electrical resistivity (DC, ω =0) of composite samples were studied to compare both the effects of CNT grafting and plasma modification on ER of resultant composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gagné, M., Therriault, D.: Lightning strike protection of composites. Prog. Aerosp. Sci. 64, 1–16 (2014)

    Article  Google Scholar 

  2. Broc, A., Delannoy, A., Montreuil, E., Lalande, P., Laroche, P.: Lightning strike to helicopters during winter thunderstroms over North Sea. Aerosp. Sci. Technol. 9, 686–691 (2005)

    Article  Google Scholar 

  3. Broc, A., Lalande, P., Montreuil, E., Moreau, J.-P., Delannoy, A., Larsson, A., Laroche, P.: A lightning swept stroke model: a valuable tool to investigate the lightning strike to aircraft. Aerosp. Sci. Technol. 10, 700–708 (2006)

    Article  Google Scholar 

  4. Uman, M.A., Rakov, V.A.: The interaction of lightning with airborne vehicles. Prog. Aerosp. Sci. 39, 61–81 (2003)

    Article  Google Scholar 

  5. Feraboli, P., Miller, M.: Damage resistance and tolerance of carbon/epoxy composite coupons subjected to simulated lightning strike. Compos. Part A. 40, 954–967 (2009)

    Article  Google Scholar 

  6. Louis, M., Joshi, S.P., Brockmann, W.: An experimental investigation of through-thickness electrical resistivity of CFRP laminates. Compos. Sci. Technol. 61, 911–919 (2001)

    Article  Google Scholar 

  7. Larsson, A.: The interaction between a lightning flash and an aircraft in flight. C. R. Physique. 3, 1423–1444 (2002)

    Article  Google Scholar 

  8. Ceysson, O., Salvia, M., Vincent, L.: Damage mechanisms characterisation of carbon fibre/epoxy composite laminates by both electrical resistance measurements and acoustic emission. Scr. Mater. 34, 1273–1280 (1996)

    Article  Google Scholar 

  9. Al-Saleh, M.H., Sundararaj, U.: A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon. 47, 2–22 (2009)

    Article  Google Scholar 

  10. Yamamoto, N., Guzman de Villoria, R., Wardle, B.L.: Electrical and thermal property enhancement of fiber-reinforced polymer laminate composites through controlled implementation of multi-walled carbon nanotubes. Compos. Sci. Technol. 72, 2009–2015 (2012)

    Article  Google Scholar 

  11. Jin, X., Wang, W., Xiao, C., Lin, T., Bian, L., Hauser, P.: Improvement of coating durability, interfacial adhesion and compressive strength of UHMWPE fiber/epoxy composites through plasma pre-treatment and polypyrrole coating. Compos. Sci. Technol. 128, 169–175 (2016)

    Article  Google Scholar 

  12. Lin, Y.-S., Hu, C.-H., Hsiao, C.-A.: Enhanced scratch resistance of flexible carbon fiber-reinforced polymer composites by low temperature plasma-polymerized organosilicon oxynitride: the effects of nitrogen addition. Compos. Sci. Technol. 71, 1579–1586 (2011)

    Article  Google Scholar 

  13. Hosono, K., Matsubara, I., Murayama, N., Shin, W., Izu, N.: Effects of discharge power on the structure and electrical properties of plasma polymerized polypyrrole films. Mater. Lett. 58, 1371–1374 (2004)

    Article  Google Scholar 

  14. Chang, W.-M., Wang, C.-C., Chen, C.-Y.: Plasma treatment of carbon nanotubes applied to improve the high performance of carbon nanofiber supercapacitors. Electrochim. Acta. 186, 530–541 (2015)

    Article  Google Scholar 

  15. Chou, T.-W., Gao, L., Thostenson, E.T., Zhang, Z., Byun, J.-H.: An assessment of the science and technology of carbon nanotube-based fibers and composites. Compos. Sci. Technol. 70, 1–19 (2010)

    Article  Google Scholar 

  16. Box, G.E.P., Behnken, D.W.: Some new three-level designs for the study of quantitative variables. Technometrics. 2, 455–475 (1960)

    Article  Google Scholar 

  17. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 57, 289–300 (1995)

    Google Scholar 

  18. Benjamini, Y., Hochberg, Y.: On the adaptive control of the false discovery rate in multiple testing with independent statistics. J. Educ. Behav. Stat. 25, 60–83 (2000)

    Article  Google Scholar 

  19. Abry, J.C., Bochard, S., Chateauminois, A., Salvia, M., Giraud, G.: In situ detection of damage in CFRP laminates by electrical resistance measurements. Compos. Sci. Technol. 59, 925–935 (1999)

    Article  Google Scholar 

  20. Yavuz, H., Girard, G., Bai, J.: Dielectric barrier discharge assisted plasma polypyrrole deposition for the surface modification of carbon nanotube-grafted carbon fibers. Thin Solid Films. 616, 220–227 (2016)

    Article  Google Scholar 

  21. Marks, D.J., Jones, F.R.: Plasma polymerised coatings for engineered interfaces for enhanced composite performance. Compos. A: Appl. Sci. Manuf. 33, 1293–1302 (2002)

    Article  Google Scholar 

  22. Swait, T.J., Whittle, T., Soutis, C., Jones, F.R.: Identification of interfacial and interphasal failure in composites of plasma polymer coated fibres. Compos. A: Appl. Sci. Manuf. 41, 1047–1055 (2010)

    Article  Google Scholar 

  23. Kowbel, W., Shan, C.H.: Mechanical behaviour of carbon-carbon composites made with cold plasma treated carbon fibres. Composites. 26, 791–797 (1995)

    Article  Google Scholar 

  24. Montes-Moran, M.A., van Hattum, F.W.J., Nunes, J.P., Martinez-Alonso, A., Tascon, J.M.D., Bernardo, C.A.: A study of the effect of plasma treatment on the interfacial properties of carbon fibre–thermoplastic composites. Carbon. 43, 1778–1814 (2005)

    Article  Google Scholar 

  25. Kettlet, P., Jones, F.R., Alexander, M.R., Short, R.D., Stollenwerk, M., Zabold, J., Michaeli, W., Wu, W., Jacobs, E., Verpoest, I.: Experimental evaluation of the interphase region in carbon fibre composites with plasma polymerised coatings. Compos. A: Appl. Sci. Manuf. 29A, 241–250 (1998)

    Article  Google Scholar 

  26. Dong, C., Ranaweera-Jayawardena, H.A., Davies, I.J.: Flexural properties of hybrid composites reinforced by S-2 glass and TFS carbon fibres. Compos. Part B Eng. 43, 573–581 (2012)

    Article  Google Scholar 

  27. Carbajal, N., Mujika, F.: Determination of compressive strength of unidirectional composites by three-point bending tests. Polym. Test. 28, 150–156 (2009)

    Article  Google Scholar 

  28. Schultheisz, C.R., Waas, A.M.: Compressive failure of composites part I: testing and micromechanical theories. Prog. Aerosp. Sci. 32, 1–42 (1996)

    Article  Google Scholar 

  29. Grimes, G.C.: Composite Materials: Testing and Design, 10th edn. ASTM, Philadelphia (1992)

    Google Scholar 

  30. Reis, P.N.B., Ferreira, J.A.M., Antunes, F.V., Costa, J.D.M.: Flexural behaviour of hybrid laminated composites. Compos. A: Appl. Sci. Manuf. 38, 1612–1620 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported under EADS FRANCE ANR PROCOM Project (contact grant no. ANR-08-MAPR-0025). The financial support from French Government (CNOUS 20082966 for H. Yavuz) gratefully acknowledged. We thank Mme. Françoise Garnier from ECP Lab. MSSMat for collecting SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hande Yavuz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavuz, H., Bai, J. Plasma Polypyrrole Coated Hybrid Composites with Improved Mechanical and Electrical Properties for Aerospace Applications. Appl Compos Mater 25, 661–674 (2018). https://doi.org/10.1007/s10443-017-9644-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-017-9644-2

Keywords

Navigation