Skip to main content
Log in

Microstructural Characterisation of Jute/Epoxy Quasi-Unidirectional Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The elastic properties of a composite can be predicted by micromechanical models based on the properties of the individual constituent materials of the composite and their geometrical characteristics. This paper presents a novel methodology using image analysis to determine (a) the fibre volume fraction and (b) the fibre orientation distribution factor of quasi-unidirectional jute fibre reinforced epoxy resin composites. For fibre volume fraction, digital micrographs were smoothed to reduce noise in the image, an intensity histogram informed selection of the threshold intensity for conversion to a binary image, the image was morphologically closed and opened to remove internal voids and small features respectively and the fibre volume fraction was calculated as the ratio of the detected fibre area to the total image area. For fibre orientation, the image was sharpened with Contrast-Limited Adaptive Histogram Equalisation, a threshold was set for conversion to binary and then a masking image was rotated at a number of seed points over the image to find the angles with the minimum sum of intensity at each point. The data generated was then used to validate new rules-of-mixture equations for natural fibre composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Summerscales, J., Dissanayake, N., Virk, A., Hall, W.: A review of bast fibres and their composites. Part 1—Fibres as reinforcements. Compos A Appl Sci Manuf 41(10), 1329–1335 (2010)

    Article  Google Scholar 

  2. Summerscales, J., Dissanayake, N., Virk, A., Hall, W.: A review of bast fibres and their composites. Part 2—Composites. Compos A Appl Sci Manuf 41(10), 1336–1344 (2010)

    Article  Google Scholar 

  3. Summerscales, J., Virk, A.S., Hall, W.: A review of bast fibres and their composites. Part 3: modelling. Compos A Appl Sci Manuf 44(1), 132–139 (2010)

    Google Scholar 

  4. Summerscales, J., Grove. S.: Manufacturing methods for natural fibre composites. In: Hodzic, A., Shanks, R. (eds.): Handbook of natural fibre composites: properties, processes, failure and applications, Woodhead Publishing, Cambridge, 2014. doi:10.1533/9780857099228.2.176

  5. Dissanayake, N.P.J., Summerscales, J.: Life cycle assessment for natural fibre composites. In: Thakur, V.K. (ed.) Green composites from natural resources. Taylor and Francis Group LLC, USA (2013). ISBN 978-1-4665-7069-6 doi:10.1201/b16076-9

  6. Garkhail, S.K., Heijenrath, R.W.H., Peijs, T.: Mechanical properties of natural-fibre-mat-reinforced thermoplastics based on flax fibres and polypropylene. Appl Compos Mater 7, 351–372 (2000)

    Article  Google Scholar 

  7. Facca, A.G., Kortschot, M.T., Yan, N.: Predicting the elastic modulus of natural fibre reinforced thermoplastics. Compos A Appl Sci Manuf 37(10), 1660–1671 (2006)

    Article  Google Scholar 

  8. Summerscales, J., Hall, W., Virk, A.S.: A fibre diameter distribution factor (FDDF) for natural fibre composites. J Mater Sci 46(17), 5876–5880 (2011)

    Article  Google Scholar 

  9. Virk, A.S., Hall, W., Summerscales, J.: Modulus and strength prediction for natural fibre composites. Mater Sci Technol 28(7), 864–871 (2012)

    Article  Google Scholar 

  10. Summerscales, J. (ed.) Microstructural characterisation of fibre-reinforced composites, Cambridge: Woodhead Publishing (1998)

  11. Summerscales, J., Pearce, N.R.L., Russell, P., Guild, F.J.: Voronoi cells, fractal dimensions and fibre composites. J Microsc 201(2), 153–162 (2001)

    Article  Google Scholar 

  12. Guild, F.J., Summerscales, J.: Microstructural image analysis applied to fibre composite materials: a review. Composites 24(5), 383–394 (1993)

    Article  Google Scholar 

  13. Yurgartis, S.W.: Measurement of small angle fiber misalignments in continuous fiber composites. Compos Sci Technol 30(4), 279–293 (1987)

    Article  Google Scholar 

  14. Clarke, A.R., Archenhold, G., Davidson, N.C.: A novel technique for determining 3D spatial distribution of glass fibres in polymer composites. Compos Sci Technol 55, 75–91 (1995)

    Article  Google Scholar 

  15. Clarke, A.R., Archenhold, G., Davidson, N.C., Fleck, N.A.: Determining the power spectral density of the waviness of unidirectional glass fibres in polymer composites. Appl Compos Mater 2, 233–243 (1995)

    Article  Google Scholar 

  16. Clarke, A.R., Archenhold, G., Davidson, N.C.: 3D confocal microscopy of glass fibre-reinforced composites, Chapter 3 in [8]

  17. Creighton, C.J., Sutcliffe, M.P.F., Clyne, T.W.: A multiple field image analysis procedure for characterisation of fibre alignment in composites. Compos A Appl Sci Manuf 32, 221–229 (2001)

    Article  Google Scholar 

  18. Kratmann, K.K., Sutcliffe, M.P.F., Lilleheden, L.T., Pyrz, R., Thomsen, O.T.: A novel image analysis procedure for measuring fibre misalignment in unidirectional fibre composites. Compos Sci Technol 69(2), 228–238 (2009)

    Article  Google Scholar 

  19. Virk, A.S., Hall, W., Summerscales, J.: Physical characterisation of jute technical fibres: fibre dimensions. J Natur Fibres 7(3), 216–228 (2010)

    Article  Google Scholar 

  20. Virk, A.S., Hall, W., Summerscales, J.: Tensile properties of jute fibres. Mater Sci Technol 25(10), 1289–1295 (2009)

    Article  Google Scholar 

  21. Virk, A.S., Hall, W., Summerscales, J.: Multiple Data Set (MDS) weak-link scaling analysis of jute fibres. Compos A Appl Sci Manuf 40(11), 1764–1771 (2009)

    Article  Google Scholar 

  22. Virk, A.S., Hall, W., Summerscales, J.: Modelling tensile properties of jute fibres. Mater Sci Technol 27(1), 458–460 (2011)

    Article  Google Scholar 

  23. Rowell, R.M., Stout, H.P., Jute and Kenaf. In: Lewin, M., Pearce, E. M., (eds.) Handbook of Fiber Chemistry, Marcel Dekker Inc. Chapter 7, ISBN 0824794710 (1998)

  24. Chattopadhyay, S.N., Pan, N.C., Day, A.: Reuse of reactive dyes for dyeing of jute fabric. Bioresour Technol 97(1), 77–83 (2006)

    Article  Google Scholar 

  25. Milner, A. The Ashford Book of Dyeing, Unicorn, ISBN 0908704887 (1998)

  26. Sicomin SR 8100 Epoxy system for injection and infusion—product data sheet, http://www.mcmc-uk.com/prod-data-sheet/sr-8100-infusion-uk.pdf, accessed 25 June 2013 (2003)

  27. West System® 501 White Pigment materials safety data sheet, http://www.westsystem.com/ss/assets/MSDS/MSDS501.pdf accessed 25 June 2013 (2011)

  28. Caldwell, B., Cooper, M., Reid, L.G., Vanderheiden, G.: Web Content Accessibility Guidelines (WCAG) 2.0: Contrast Ratio, http://www.w3.org/TR/2008/REC-WCAG20-20081211/#contrast-ratiodef, accessed 25 June 2013 (2008)

  29. Grafil: Test reference 101.13: Filament tensile strength and modulus, Coventry: Courtaulds Limited (1980)

  30. ASTM: Standard D3379–75: Standard test method for tensile strength and Young’s modulus for high-modulus single-filament materials (withdrawn 1998) (1975)

  31. Virk, A.S., Hall, W., Summerscales, J.: Failure strain as the key design criterion for fracture of natural fibre composites. Compos Sci Technol 70(6), 995–999 (2010)

    Article  Google Scholar 

  32. Marques de Sá, J.P.: Applied Statistics Using SPSS, STATISTICA, MATLAB and R, Springer-Verlag Berlin Heidelberg, 2007, ISBN 978-3-540-71971-7 (2007)

  33. Åström, B.T.: Manufacturing of polymer composites. Chapman & Hall, London (1997). ISBN 0748770763

    Google Scholar 

  34. Williams, C., Summerscales, J., Grove, S.: Resin Infusion under Flexible Tooling (RIFT): a review. Compos A Appl Sci Manuf 27A(7), 517–524 (1996)

    Article  Google Scholar 

  35. Cripps, D., Searle, T.J., Summerscales, J.: Chapter 21: Open mould techniques for thermoset composites. In: Talreja, R., Månson, J.-A. (eds.) Comprehensive composite materials encyclopaedia—polymer matrix composites, vol. 2, pp. 737–761. Elsevier Science, Oxford (2000)

    Chapter  Google Scholar 

  36. Feiler, M., Dudenhausen, W., Chatzigeorgiou, L.: Manufacturing of primary aircraft structures with vacuum assisted resin infusion, Society of Manufacturing Engineers (ICCM-14) (2003)

  37. Summerscales, J., Searle, T.J.: Review: low pressure (vacuum infusion) techniques for moulding large composite structures. Proc IMechE L J Mater Des Appl L219(1), 45–58 (2005)

    Google Scholar 

  38. Summerscales, J.: Resin Infusion Under Flexible Tooling (RIFT), Encyclopedia of Composites—second edition, John Wiley & Sons, 2648-2658, DOI: 10.1002/9781118097298.weoc216 (2012)

  39. Adams, D.F., Carlsson, L.A., Pipes, R.B.: Experimental characterization of advanced composite materials. CRC Press, Boca Raton (2002). ISBN 1587161001

    Google Scholar 

  40. ASTM Standard D3039–00: Standard test method for tensile properties of polymer matrix composite materials (2000)

  41. BS EN ISO 527–1:1996: Plastics—determination of tensile properties (1996)

  42. BS EN ISO 527–4:1996: Plastics—determination of tensile properties (1996)

  43. Gonzalez, R.C., Woods, R.E.: Digital image processing, Prentice Hall, ISBN 013168728X (2007)

  44. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital image processing using matlab, Prentice Hall, ISBN 0130085197 (2003)

  45. Matlab Image Processing Toolbox, http://www.mathworks.com/access/helpdesk/help/toolbox/images/adapthisteq.html (2008)

  46. Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Heckbert, P.S., (ed), Graphic Gems IV, Academic Press Inc., 474–485 (1994)

  47. Elsayed, E.A.: ‘Reliability Engineering’, Addison Wesley Longman, ISBN 0201634813 (1996)

  48. Reliasoft, Life data analysis reference, ReliaSoft Publishing, http://reliawiki.com/index.php/Life_Data_Analysis_Reference, accessed on 25 June 2013 (2013)

  49. Folkes, M.J.: Short fibre reinforced thermoplastics, Chichester: Research Studies Press, ISBN 0471102091 (1982)

  50. Krenchel, H.: Fibre reinforcement. Akademisk Forlag, Copenhagen (1964)

    Google Scholar 

  51. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes, Cambridge: Cambridge University Press, ISBN 0521880688 (2007)

  52. Harris, J., Bond, I.P., Weaver, P., Wisnom, M.: Improving fibre reinforced plastics’ through-thickness properties using novel shaped fibres. Proc IMechE L J Mater Des Appl 218(L1), 29–35 (2004)

    Google Scholar 

  53. Hucker, M., Bond, I., Bleay, S., Haq, S.: Experimental evaluation of unidirectional hollow glass fibre/epoxy composites under compressive loading. Compos A Appl Sci Manuf 34(10), 927–932 (2003)

    Article  Google Scholar 

  54. Lamy, B., Baley, C.: Stiffness prediction of flax fibers-epoxy composite materials. J Mater Sci Lett 19(11), 979–980 (2000)

    Article  Google Scholar 

  55. Bodros, E., Baley, C.: Study of the tensile properties of stinging nettle fibres (Urtica dioica). Mater Lett 62(14), 2143–2145 (2008)

    Article  Google Scholar 

  56. Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3, 72–79 (1952)

    Article  Google Scholar 

  57. Kelly, A., Tyson, W.R.: Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum. J Mech Phys Solids 13, 329–350 (1965)

    Article  Google Scholar 

  58. Potter, R.T.: Strength of composites. In: Kelly, A. (ed.) Concise encyclopedia of composite materials. Pergamon, Oxford (1989). ISBN 0-08-034718-5

    Google Scholar 

Download references

Acknowledgments

ASV is grateful to the University of Plymouth for a scholarship to pursue his doctorate. The authors would like to thank a former colleague Joe Ellison for obtaining the fibres from IJIRA/IJSG. This paper was presented at the 9th International Conference on Composite Science & Technology (ICCST-9), Sorrento – Italy, 24-26 April 2013 and at the 1st International Conference on Natural Fibers: sustainable materials for advanced applications (ICNF2013), Guimarães – Portugal, 09–11 June 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Summerscales.

Appendices

Appendix A. Dyeing Jute Fibres [25]

Dry jute fibres were first weighed (75 g) and then soaked in water for 15 min. The dye pot was prepared by adding warm water (45 °C) in plastic container using water to fibre ratio of 30:1 by weight. The dye power was mixed with cold water to make a smooth paste, which was then diluted and completely dissolved in the dye bath. Ratio of 1:25 was used for dye powder weight (3 g) to fibre weight. The wetted jute fibres were added to the dye bath and stirred for 10 min. Glauber’s salt (sodium sulphate) was then added to the dye bath in 3 equal parts at 5 min intervals. The fibres were removed from the bath while adding Glauber’s salt to the bath to properly mix the salt in the bath. After mixing the salt the fibres were again immersed in the bath. The weight ratio of 1.1:1 was used for the Glauber’s salt (82.5 g) to fibre. Dye was fixed to the fibres by adding soda ash (sodium carbonate) to the dye bath 10% weight of soda (7.5 g) to fibre weight was used. The soda ash was dissolved in small quantity of warm water and then added to the dye bath (fibres were removed from the bath while soda ash solution was added). The fibres were left in the solution for 2 h and the solution was stirred occasionally. After that, fibres were rinsed in cold water and were dried for 12 h in warm air. While dyeing the fibres due care was taken to ensure minimum disturbance to the original fibre orientation.

Appendix B. Specimen Tensile Test Results

The specimen dimension, the tensile test results and the failure location for each specimen which failed within the gauge length are given in Table 9.

Table 9 Specimen tensile test results

Appendix C. Micrograph Fibre Volume Fraction

The estimated fibre volume fractions for each micrograph for each specimen are given in Table 10.

Table 10 Micrograph fibre volume fraction

Appendix D. Micrograph DOFARRA Parameters

The estimated DOFARRAs for each micrograph for each specimen are given in Table 11.

Table 11 Micrograph DOFARRA parameters

Appendix E. Fibre Orientation Distribution Factor (FODF) Calculated from the DOFARRA Data

Fibre orientation distribution factor (FODF) calculated from DOFARRA is given in Table 12.

Table 12 Micrograph fibre orientation distribution factor (FODF)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virk, A.S., Hall, W. & Summerscales, J. Microstructural Characterisation of Jute/Epoxy Quasi-Unidirectional Composites. Appl Compos Mater 21, 885–903 (2014). https://doi.org/10.1007/s10443-014-9389-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-014-9389-0

Keywords

Navigation