Skip to main content

Advertisement

Log in

Relationships Between LRI Process Parameters and Impact and Post-Impact Behaviour of Stitched and Unstitched NCF Laminates

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The general context of the development of out-of-autoclave processes in the aeronautics industry raises the question of the possible links between these new processes and impact behaviour. In this study, a Taguchi table was used in a design of experiment approach to establish possible links. The study focused on the liquid resin infusion process applied to laminates made with stitched or unstitched quadri-axial carbon Non-Crimp Fabric (NCF). On the basis of previous studies and an analysis of the literature, five process parameters were selected (stitching, curing temperature, preform position, number of highly porous media, vacuum level). The impact energy was set at 35 J in order to obtain enough residual dent depth. The parameters analysed during and after impact were: maximum displacement of the impactor, energy absorbed, permanent indentation depth, and delaminated surface. Then, compression after impact tests were performed and the corresponding average stress was measured. The interactions found by statistical analysis show a very high sensitivity to stitching, which was, of course, expected. A very significant influence of curing temperature and a significant influence of preform position were also found on the permanent indentation depth and a physical explanation is provided. Globally, it was demonstrated that the resin infusion process itself did not influence the impact behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

C o :

Stitching process parameter

N HPM :

Number of High Porous Media (HPM) process parameter

C p :

Plate side process parameter

T c :

Curing temperature process parameter

V L :

Vacuum level process parameter

E a :

Energy absorbed during impact

E e :

Elastic energy

S d :

Delaminated surface

δmax :

Maximum displacement of the impactor

αp :

Residual dent depth

References

  1. Beckwith, S.W.: Resin infusion liquid molding vacuum infusion processing numerous other names. An Alphabet Soup Expanding Tecnologies. SAMPE Journal 42(1) (2006).

  2. Takeda, F., Nishiyama, S., Hayashi, K., Komori, Y., Suga, Y., Asahara N.: Research in the Application of the VARTM Technique to the Fabrication of Primary Aircraft Composite Structures. Mitsubishi Heavy Industries. Technical Review 42(5) (2005)

  3. Casari, P., Stervinou, B., Davies, P., Choqueuse, D.: Process-mechanical properties relationship for an aircraft wing spar: comparison of prepreg, LRI and RFI techniques. FPCM-9, 9th International Conference on Flow Processes in Composite Materials Montréal (Québec), Canada 8–10 July 2008

  4. Fualdes, C., Morteau, E.: Composite@Airbus – Damage Tolerance Methodology. FAA Workshop for Composite Damage Tolerance and Maintenance, Chicago IL, July 19–21, 2006

  5. Bouvet, C., Castanié, B., Bizeul, M., Barrau, J.-J.: Low velocity impact modelling in laminate composite panels with discrete interface elements. Int J Sol Struct 46, 2809–2821 (2009)

    Article  Google Scholar 

  6. Abrate, S.: Impact on Composites Structures. Cambridge University Press, (1998)

  7. Petit, S., Bouvet, C., Bergerot, A., Barrau, J.J.: Impact and compression after impact of a composite laminate with a cork thermal shield. Comp. Sci. Tech. 67, 3286–3299 (2007)

    Article  CAS  Google Scholar 

  8. De Freitas, M., Reis, L.: Failure mechanisms on composite specimens subjected to compression after impact. Comp. Struct. 42, 365–373 (1998)

    Article  Google Scholar 

  9. Lundstrom, T.S.: The permeability of non-crimp stitched fabrics. Comp. Part A 31, 1345–1353 (2000)

    Article  Google Scholar 

  10. Mattsson, D., Joffe, R., Varna, J.: Methodology for characterization of internal structure parameters governing performance in NCF composites. Comp. Part B 38, 44–57 (2007)

    Article  Google Scholar 

  11. Drapier, S., Wisnom, M.R.: Finite-element investigation of the compressive strength of non-crimp-fabric-based composites. Comp. Sci. Tech. 59, 1287–1297 (1999)

    Article  Google Scholar 

  12. Edgren, F., Asp, L.E., Joffe, R.: Failure of NCF subjected to combined compression and shear loading. Comp. Sci. Tech 66, 2865–2877 (2006)

    Article  CAS  Google Scholar 

  13. Koissin, V., Kustermans, J., Lomov, S.V., Verpoest, I., Van Den Broucke, B., Witzel, V.: Structurally stitched NCF Preforms: Quasi-Static response. Comp. Sci. Tech 69, 2701–2710 (2009)

    Article  CAS  Google Scholar 

  14. Asp, L.E., Juntikka, R.: High velocity impact on NCF reinforced composite. Comp. Sci. Tech 69, 1478–1482 (2009)

    Article  CAS  Google Scholar 

  15. Vallons, K., Behaeghe, A., Lomov, S.V., Verpoest, I.: Impact and Post-Impact properties of carbon fibre non-crimp fabric and a twill weave composite. Comp. Part A 41, 1019–1026 (2010)

    Article  Google Scholar 

  16. Heb, H., Himmel, N.: Structurally stitched NCF CFRP laminates. Part 1: Experimental characterization of in-plane and out-of-plane properties. Comp. Sci. Tech. 71, 549–568 (2011)

    Article  Google Scholar 

  17. Heb, H., Himmel, N.: Structurally stitched NCF CFRP laminates. Part 2: Finite element unit cell based prediction of in-plane strength. Comp. Sci. Tech. 71, 569–585 (2011)

    Article  Google Scholar 

  18. Mouritz, A.P., Leong, K.H., Herszberg, I.: A review of the effect of stitching on the in-plane mechanical properties of fibre-reinforced polymer composites. Comp. Part A 28A, 979–991 (1997)

    Article  CAS  Google Scholar 

  19. Mouritz, A.P.: Review of Z-pinned composite laminates. Comp. Part A 38, 2383–2397 (2007)

    Article  Google Scholar 

  20. Toral Vasquez, J., Castanié, B., Barrau, J.J., Swiergel, N.: Multi-level analysis of low-cost z-pinned composite junctions, part 1: single z-pin behavior. Comp. Part A 42, 2070–2081 (2011)

    Google Scholar 

  21. Toral Vasquez, J., Castanié, B., Barrau, J.J., Swiergel, N.: Multi-level analysis of low-cost z-pinned composite junctions, part 2 Joint behavior. Comp. Part A 42, 2082–2092 (2011)

    Google Scholar 

  22. Teemer, L., Okoli, O. I., Liang, Z.: The effect of processing parameters on the mechanical properties of components manufactured using the Resin Infusion between Double Flexible Tooling Process. SAMPE’06 Long Beach April, 51 (2006)

  23. Lawrence, J.M., Neacsu, V., Advani, S.G.: Modeling the impact of capillary pressure and air entrapment on fiber tow saturation during resin infusion in LCM. Comp. Part A 40, 1053–1064 (2009)

    Article  Google Scholar 

  24. Trochu, F., Ruiz, E., Achim, V., Soukane, S.: Advanced numerical simulation of liquid composite molding for process analysis and optimization. Comp. Part A 37, 890–902 (2006)

    Article  Google Scholar 

  25. Ruiz, E., Trochu, F.: Comprehensive thermal optimization of liquid composite molding to reduce cycle time and processing stresses. Polym. Comp. 26, 209–230 (2005)

    Article  CAS  Google Scholar 

  26. Njionhou, A., Berthet, F., Castanié, B.: Optimisation de la résistance au cisaillement interlaminaire (RCIL) des matériaux composites fabriqués par LRI en fonction des paramètres de fabrication. Mat. Tech 98, 151–163 (2010)

    Article  CAS  Google Scholar 

  27. Njionhou, A., Berthet, F., Castanié, B.: Relationships between process parameters and mechanical properties of composite made by L.R.I. 10th International Conference on Flow Processes in Composite Materials (FPCM10) Monte Verità, Ascona, CH – July 11–15, 2010

  28. SAERTEX Datasheet.: Description of style quadriaxial–carbon–fabric PB/PE. SAERTEX GmbH&Co (2005)

  29. Yenilmez, B., Senan, M., Sozer, E.M.: Variation of part thickness and compaction pressure in vacuum infusion process. Comp. Sci. Tech. 69, 1710–1719 (2009)

    Article  CAS  Google Scholar 

  30. Govignon, Q., Bickerton, S., Morris, J.: Full field monitoring of the resin flow and laminate properties during the resin infusion process. Comp. Part A 39, 1412–1426 (2008)

    Article  Google Scholar 

  31. Dong, C.: A modified rule of mixture for the vacuum-assisted resin transfer moulding process simulation. Comp. Sci. Tech. 68, 2125–2133 (2008)

    Article  CAS  Google Scholar 

  32. Lee, C.-L., Wei, K.-H.: Effect of material and process variables on the performance of resin-transfer-molded epoxy fabric composites. J. Appl. Polym. Sci. 77, 2149–2155 (2000)

    Article  CAS  Google Scholar 

  33. Pearce, N.R.L.: An investigation into the effects of fabric architecture on the processing and properties of fibre reinforced composites produced by resin transfer moulding. Comp. Part A 29, 19–27 (1998)

    Article  Google Scholar 

  34. Abdallah, E., Bouvet, C., Rivallant, S., Barrau, J.J.: Experimental analysis of damage creation and permanent indentation on highly oriented plates. Comp. Sci. Tech. 69, 1238–1245 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Castanié.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Njionhou, A., Berthet, F., Castanié, B. et al. Relationships Between LRI Process Parameters and Impact and Post-Impact Behaviour of Stitched and Unstitched NCF Laminates. Appl Compos Mater 19, 885–899 (2012). https://doi.org/10.1007/s10443-011-9241-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-011-9241-8

Keywords

Navigation