Skip to main content
Log in

A Numerical Simulation of Time-Dependent Interface Failure Under Shear and Compressive Loads in Single-Fiber Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

We performed a numerical simulation of a time-dependent interfacial failure accompanied by a fiber failure, and examined their evolution under shear and compressive loads in single-fiber composites. The compressive load on the interface consists of Poisson’s contraction for matrix resin subjected to longitudinal tensile load. As time progresses, compressive stress at the interface in the fiber radial direction relaxes under the constant longitudinal tensile strain condition for the specimen, directly causing the relaxation of the interface frictional stress. This relaxation facilitates the failure of the interface. In this analysis, a specific criterion for interface failure is applied; apparent interfacial shear strength is enhanced by compressive stress, which is referred as quasi-parabolic criterion in the present study. The results of the stress recovery profile around the fiber failure and the interfacial debonding length as a function of time simulated by the finite element analysis employing the criterion are very similar to experimental results obtained using micro-Raman spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schapery, R.A.: On the characterization of nonlinear viscoelastic materials. Polymer Eng. Sci. 9, 295–310 (1969)

    Article  CAS  Google Scholar 

  2. Schapery, R.A.: Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics. Mech. Time Depen. Mater. 1, 209–240 (1997)

    Article  Google Scholar 

  3. Lou, Y.C., Schapery, R.A.: Viscoelastic characterization of a nonlinear fiber-reinforced plastic. J. Compos. Mater. 5, 208–234 (1971)

    Article  CAS  Google Scholar 

  4. Zaoutsos, S.P., Papanicolaou, G.C., Cardon, A.H.: On the non-linear viscoelastic behaviour of polymer-matrix composites. Compos. Sci. Tech. 58, 883–889 (1998)

    Article  CAS  Google Scholar 

  5. Zaoutsos, S.P., Papanicolaou, G.C., Cardon, A.H.: Prediction of the non-linear viscoelastic response of unidirectional fiber composites. Compos. Sci. Tech. 59, 1311–1319 (1999)

    Article  Google Scholar 

  6. Papanicolaou, G.C., Zaoutsos, S.P., Cardon, A.H.: Further development of a data reduction method for the nonlinear viscoelastic characterization of FRPs. Compos. Part A 30, 839–848 (1999)

    Article  Google Scholar 

  7. Ogawa, F., Koyanagi, J., Kawada, H.: Nonlinear viscoelastic constitutive equation in consideration of permanent strain in vinylester resin. Trans. Japan Soc. Mech. Eng. A 709, 1243–1249 (2005). (In Japanese)

    Google Scholar 

  8. Koyanagi, J.: Comparison of a viscoelastic frictional interface theory with a kinetic crack growth theory in unidirectional composites. Compos. Sci. Tech. 69, 2158–2162 (2009)

    Article  CAS  Google Scholar 

  9. Koyanagi, J., Ogawa, F., Kawada, H., Hatta, H.: Time-dependent reduction of tensile strength caused by interfacial degradation under constant strain duration in UD-CFRP. J. Compos. Mater. 41, 3007–3026 (2007)

    Article  Google Scholar 

  10. Koyanagi, J., Kotani, M., Hatta, H., Kawada, H.: A comprehensive model for determining tensile strengths of various unidirectional composites. J. Compos. Mater. 43, 1901–1914 (2009)

    Article  Google Scholar 

  11. Ohno, N., Kawabe, H., Miyake, T., Mizuno, M.: A model for shear stress relaxation around fiber break in unidirectional composites and creep rupture analysis. J. Soc. Mater. Sci. Japan 47, 184–191 (1998). (In Japanese)

    CAS  Google Scholar 

  12. Ohno, N., Miyake, T.: Stress relaxation in broken fibers in unidirectional composites: modeling and application to creep rupture analysis. I. J. Plast. 15, 167–189 (1999)

    Article  MATH  CAS  Google Scholar 

  13. Miyake, T., Yamakawa, T., Ohno, N.: Measurement of stress relaxation in broken fibers embedded in epoxy using Raman spectroscopy. J. Mater. Sci. 33, 5177–5183 (1998)

    Article  CAS  Google Scholar 

  14. Beyerlein, I., Phoenix, S.: Time evolution of stress redistribution around multiple fiber breaks in a composite with viscous and viscoelastic matrices. I. J. Solid. Struct. 35, 3177–3211 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Beyerlein, I., Zhou, C., Schadler, L.: A time dependent micro-mechanical fiber composite model for inelastic zone growth in viscoelastic matrices. I. J. Solid. Struct. 40, 1–24 (2003)

    Article  Google Scholar 

  16. Zhou, C., Schadler, L., Beyerlein, I.: Time-dependent micromechanical behavior in graphite/epoxy composites under constant load: a combined experimental and theoretical study. Acta Mater. 50, 365–377 (2002)

    Article  CAS  Google Scholar 

  17. Koyanagi, J., Yoneyama, S., Eri, K., Shah, P.D.: Time dependency of carbon/epoxy interface strength. Compos. Struct. 92, 150–154 (2010)

    Article  Google Scholar 

  18. Park, J.M., Kim, J.W., Yoon, D.J.: Comparison of interfacial properties of electrodeposited single carbon fiber/epoxy composites using tensile and compressive fragmentation tests and acoustic emission. J. Colloid Interface Sci. 247, 231–245 (2002)

    Article  CAS  PubMed  Google Scholar 

  19. Koyanagi, J., Kato, H., Ogihara, S.: Analyses for establishing a failure criterion on the fiber/matrix interface using a cruciform specimen test. Mater. System 27, 63–69 (2009). (In Japanese)

    Google Scholar 

  20. Audoly, B.: Asymptotic study of the interfacial crack with friction. J. Mech. Phys. Solids 48, 1851–1864 (2000)

    Article  MATH  ADS  Google Scholar 

  21. Koyanagi, J., Shah, P.D., Kimura, S., Ha, S.K., Kawada, H.: Mixed-mode interfacial debonding simulation in single fiber composite under a transverse load. J. Solid Mech. Mater. Eng. 3, 796–806 (2009)

    Article  Google Scholar 

  22. Geubelle, P., Baylor, J.: Impact-induced delamination of composites: a 2D simulation. Compos. B 29, 19–40 (1998)

    Article  Google Scholar 

  23. Camanho, P., Davila, C.: Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. NASA technical reports, NASA/TM-2002-211737

  24. Nishikawa, M., Okabe, T., Takeda, N.: Determination of interface properties from experiments on the fragmentation process in single-fiber composites. Mater. Sci. Eng. A 480, 549–557 (2007)

    Google Scholar 

  25. Yoshimura, A., Yashiro, S., Okabe, T., Takeda, N.: Characterization of tensile damage progress in stitched CFRP laminates. Adv. Compos. Mater. 16, 223–244 (2007)

    Article  CAS  Google Scholar 

  26. Yashiro, S., Takeda, N., Okabe, T., Sekine, H.: A new approach to predicting multiple damage states in composite laminates with embedded FBG sensors. Compos. Sci. Tech. 65, 659–667 (2005)

    Article  Google Scholar 

  27. Okabe, T., Sekine, H., Noda, J., Nishikawa, M., Takeda, N.: Characterization of tensile damage and strength in GFRP cross-ply laminates. Mater. Sci. Eng. A 383, 381–389 (2004)

    Article  Google Scholar 

  28. Aymerich, F., Dore, F., Priolo, P.: Prediction of impact-induced delamination in cross-ply composite laminates using cohesive interface elements. Compos. Sci. Tech. 68, 2383–2390 (2008)

    Article  CAS  Google Scholar 

  29. Theocaris, P.S.: Failure criteria for isotropic bodies revisited. Eng. Fract. Mech. 51, 239–255 (1995)

    Article  ADS  Google Scholar 

  30. Ogihara, S., Koyanagi, J.: Investigation of combined stress-state failure-criterion for glass fiber/epoxy interface by cruciform specimen test. Composite Science and Technology. (In Press 2009)

Download references

Acknowledgements

This work was supported in part by The Kurata Memorial Hitachi Science and Technology Foundation and by a Grant-in-Aid for Young Scientists (B) from the Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Koyanagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koyanagi, J., Yoshimura, A., Kawada, H. et al. A Numerical Simulation of Time-Dependent Interface Failure Under Shear and Compressive Loads in Single-Fiber Composites. Appl Compos Mater 17, 31–41 (2010). https://doi.org/10.1007/s10443-009-9118-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-009-9118-2

Keywords

Navigation