Skip to main content

Advertisement

Log in

Formalizing Metabolic-Regulatory Networks by Hybrid Automata

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Computational approaches in systems biology have become a powerful tool for understanding the fundamental mechanisms of cellular metabolism and regulation. However, the interplay between the regulatory and the metabolic system is still poorly understood. In particular, there is a need for formal mathematical frameworks that allow analyzing metabolism together with dynamic enzyme resources and regulatory events. Here, we introduce a metabolic-regulatory network model (MRN) that allows integrating metabolism with transcriptional regulation, macromolecule production and enzyme resources. Using this model, we show that the dynamic interplay between these different cellular processes can be formalized by a hybrid automaton, combining continuous dynamics and discrete control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abou-Jaoudé W, Traynard P, Monteiro PT, Saez-Rodriguez J, Helikar T, Thieffry D, Chaouiya C (2016) Logical modeling and dynamical analysis of cellular networks. Front Genet 7:94

    Article  Google Scholar 

  • Bockmayr A, Courtois A (2002) Using hybrid concurrent constraint programming to model dynamic biological systems. In: 18th international conference on logic programming, ICLP’02. Copenhagen, Springer, LNCS 2401, pp 85–99

  • Bortolussi L, Policriti A (2008) Hybrid systems and biology. In: International school on formal methods for the design of computer, communication and software systems. Springer, LNCS 5016, pp 424–448

  • Brandt F, Etchells SA, Ortiz JO, Elcock AH, Hartl FU, Baumeister W (2009) The native 3D organization of bacterial polysomes. Cell 136(2):261–271

    Article  Google Scholar 

  • Bremer H, Dennis PP (1996) Modulation of chemical composition and other parameters of the cell by growth rate. E. coli and Salmonella: Cell Mol Biol 2(2):1553–69

    Google Scholar 

  • Chaves M, Oyarzún DA, Gouzé JL (2019) Analysis of a genetic-metabolic oscillator with piecewise linear models. J Theor Biol 462:259–269

    Article  Google Scholar 

  • Covert MW, Schilling CH, Palsson BØ (2001) Regulation of gene expression in flux balance models of metabolism. J Theor Biol 213(1):73–88

    Article  Google Scholar 

  • Faizi M, Zavřel T, Loureiro C, J̌ervený J, Steuer R (2018) A model of optimal protein allocation during phototrophic growth. BioSystems 166:26–36

    Article  Google Scholar 

  • Goelzer A, Fromion V, Scorletti G (2011) Cell design in bacteria as a convex optimization problem. Automatica 47(6):1210–1218

    Article  Google Scholar 

  • Görke B, Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6(8):613–624

    Article  Google Scholar 

  • Henzinger TA (2000) The theory of hybrid automata. In: Verification of digital and hybrid systems, Springer, Berlin, pp 265–292

    Chapter  Google Scholar 

  • Jeanne G, Goelzer A, Tebbani S, Dumur D, Fromion V (2018) Dynamical resource allocation models for bioreactor optimization. IFAC-PapersOnLine 51(19):20–23

    Article  Google Scholar 

  • Kennell D, Riezman H (1977) Transcription and translation initiation frequencies of the Escherichia coli lac operon. J Mol Biol 114(1):1–21

    Article  Google Scholar 

  • Keseler IM, Collado-Vides J, Santos-Zavaleta A, Peralta-Gil M, Gama-Castro S, Muñiz-Rascado L, Bonavides-Martinez C, Paley S, Krummenacker M, Altman T et al (2010) EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res 39(suppl–1):D583–D590

    Google Scholar 

  • Kremling A, Geiselmann J, Ropers D, De Jong H (2018) An ensemble of mathematical models showing diauxic growth behaviour. BMC Syst Biol 12(1):82

    Article  Google Scholar 

  • Lerman JA, Hyduke DR, Latif H, Portnoy VA, Lewis NE, Orth JD, Schrimpe-Rutledge AC, Smith RD, Adkins JN, Zengler K, Palsson BØ (2012) In silico method for modelling metabolism and gene product expression at genome scale. Nat Commun 3:929

    Article  Google Scholar 

  • Lin L, Bockmayr A (2019) Hybrid modeling of metabolic-regulatory networks (Extended abstract). In: 6th International workshop on hybrid systems and biology, HSB 2019, Prague. Springer, LNBI 11705, to appear

  • Marmiesse L, Peyraud R, Cottret L (2015) Flexflux: combining metabolic flux and regulatory network analyses. BMC Syst Biol 9(1):93

    Article  Google Scholar 

  • Molenaar D, Van Berlo R, De Ridder D, Teusink B (2009) Shifts in growth strategies reflect tradeoffs in cellular economics. Mol Syst Biol 5(1):323

    Article  Google Scholar 

  • New AM, Cerulus B, Govers SK, Perez-Samper G, Zhu B, Boogmans S, Xavier JB, Verstrepen KJ (2014) Different levels of catabolite repression optimize growth in stable and variable environments. PLOS Biol 12(1):e1001764

    Article  Google Scholar 

  • Raskin JF (2005) An introduction to hybrid automata. In: Hristu-Varsakelis D, Levine W (eds) Handbook of networked and embedded control systems. Birkhäuser, Boston, pp 491–517

    Chapter  Google Scholar 

  • Reimers AM, Knoop H, Bockmayr A, Steuer R (2017) Cellular trade-offs and optimal resource allocation during cyanobacterial diurnal growth. Proc Natl Acad Sci 114(31):E6457–E6465

    Article  Google Scholar 

  • Reimers AM, Lindhorst H, Waldherr S (2017) A protocol for generating and exchanging (genome-scale) metabolic resource allocation models. Metabolites 7(3):47

    Article  Google Scholar 

  • Ropers D, De Jong H, Page M, Schneider D, Geiselmann J (2006) Qualitative simulation of the carbon starvation response in Escherichia coli. Biosystems 84(2):124–152

    Article  Google Scholar 

  • Rügen M, Bockmayr A, Steuer R (2015) Elucidating temporal resource allocation and diurnal dynamics in phototrophic metabolism using conditional FBA. Sci Rep 5:15247

    Article  Google Scholar 

  • Simmons SO, Fan CY, Ramabhadran R (2009) Cellular stress response pathway system as a sentinel ensemble in toxicological screening. Toxicol Sci 111(2):202–225

    Article  Google Scholar 

  • Waldherr S, Oyarzún DA, Bockmayr A (2015) Dynamic optimization of metabolic networks coupled with gene expression. J Theor Biol 365:469–485

    Article  Google Scholar 

  • Weiße AY, Oyarzún DA, Danos V, Swain PS (2015) Mechanistic links between cellular trade-offs, gene expression, and growth. Proc Natl Acad Sci USA 112(9):E1038–E1047

    Article  Google Scholar 

  • Yang L, Ebrahim A, Lloyd CJ, Saunders MA, Palsson BØ (2019) DynamicME: dynamic simulation and refinement of integrated models of metabolism and protein expression. BMC Syst Biol 13(1):2

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Köbis for his help in running the simulations. Lin Liu gratefully acknowledges support from the China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Bockmayr, A. Formalizing Metabolic-Regulatory Networks by Hybrid Automata. Acta Biotheor 68, 73–85 (2020). https://doi.org/10.1007/s10441-019-09354-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-019-09354-y

Keywords

Navigation