Skip to main content
Log in

Dynamics of Neural Networks with Elapsed Time Model and Learning Processes

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We introduce and study a new model of interacting neural networks, incorporating the spatial dimension (e.g. position of neurons across the cortex) and some learning processes. The dynamic of each neural network is described via the elapsed time model, that is, the neurons are described by the elapsed time since their last discharge and the chosen learning processes are essentially inspired from the Hebbian rule. We then obtain a system of integro-differential equations, from which we analyze the convergence to stationary states by the means of entropy method and Doeblin’s theory in the case of weak interconnections. We also consider the situation where neural activity is faster than the learning process and give conditions where one can approximate the dynamics by a solution with a similar profile of a steady state. For stronger interconnections, we present some numerical simulations to observe how the parameters of the system can give different behaviors and pattern formations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abbassian, A., Fotouhi, M., Heidari, M.: Neural fields with fast learning dynamic kernel. Biol. Cybern. 106(1), 15–26 (2012)

    Article  MathSciNet  Google Scholar 

  2. Amari, S.i.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27(2), 77–87 (1977)

    Article  MathSciNet  Google Scholar 

  3. Cáceres, M.J., Carrillo, J.A., Perthame, B.: Analysis of nonlinear noisy integrate & fire neuron models: blow-up and steady states. J. Math. Neurosci. 1(1), 7 (2011)

    Article  MathSciNet  Google Scholar 

  4. Cañizo, J.A., Yoldaş, H.: Asymptotic behaviour of neuron population models structured by elapsed-time. Nonlinearity 32(2), 464 (2019)

    Article  MathSciNet  Google Scholar 

  5. Carrillo, J.A., Perthame, B., Salort, D., Smets, D.: Qualitative properties of solutions for the noisy integrate and fire model in computational neuroscience. Nonlinearity 28(9), 3365 (2015)

    Article  MathSciNet  Google Scholar 

  6. Chevallier, J., Cáceres, M.J., Doumic, M., Reynaud-Bouret, P.: Microscopic approach of a time elapsed neural model. Math. Models Methods Appl. Sci. 25(14), 2669–2719 (2015)

    Article  MathSciNet  Google Scholar 

  7. Crevat, J.: Diffusive limit of a spatially-extended kinetic FitzHugh-Nagumo model (2019). ArXiv preprint, arXiv:1906.08073

  8. Crevat, J.: Mean-field limit of a spatially-extended FitzHugh-Nagumo neural network. Kinet. Relat. Models 12(6), 1329–1358 (2019)

    Article  MathSciNet  Google Scholar 

  9. Crevat, J., Faye, G., Filbet, F.: Rigorous derivation of the nonlocal reaction-diffusion FitzHugh–Nagumo system. SIAM J. Math. Anal. 51(1), 346–373 (2019)

    Article  MathSciNet  Google Scholar 

  10. Faye, G.: Existence and stability of traveling pulses in a neural field equation with synaptic depression. SIAM J. Appl. Dyn. Syst. 12(4), 2032–2067 (2013)

    Article  MathSciNet  Google Scholar 

  11. Faye, G., Faugeras, O.: Some theoretical and numerical results for delayed neural field equations. Phys. D: Nonlinear Phenom. 239(9), 561–578 (2010)

    Article  MathSciNet  Google Scholar 

  12. Faye, G., Rankin, J., Chossat, P.: Localized states in an unbounded neural field equation with smooth firing rate function: a multi-parameter analysis. J. Math. Biol. 66(6), 1303–1338 (2013)

    Article  MathSciNet  Google Scholar 

  13. Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  14. Hebb, D.: The Organization of Behavior: A Neuropsychological Approach (1949)

    Google Scholar 

  15. Kang, M.J., Perthame, B., Salort, D.: Dynamics of time elapsed inhomogeneous neuron network model. C. R. Math. 353(12), 1111–1115 (2015)

    Article  MathSciNet  Google Scholar 

  16. Ly, C., Tranchina, D.: Spike train statistics and dynamics with synaptic input from any renewal process: a population density approach. Neural Comput. 21(2), 360–396 (2009)

    Article  MathSciNet  Google Scholar 

  17. Michel, P., Mischler, S., Perthame, B.: General relative entropy inequality: an illustration on growth models. J. Math. Pures Appl. 84(9), 1235–1260 (2005)

    Article  MathSciNet  Google Scholar 

  18. Mischler, S., Weng, Q.: Relaxation in time elapsed neuron network models in the weak connectivity regime. Acta Appl. Math. 157(1), 45–74 (2018)

    Article  MathSciNet  Google Scholar 

  19. Pakdaman, K., Perthame, B., Salort, D.: Dynamics of a structured neuron population. Nonlinearity 23(1), 55–75 (2010). https://doi.org/10.1088/0951-7715/23/1/003

    Article  MathSciNet  MATH  Google Scholar 

  20. Pakdaman, K., Perthame, B., Salort, D.: Relaxation and self-sustained foscillations in the time elapsed neuron network model. SIAM J. Appl. Math. 73(3), 1260–1279 (2013). https://doi.org/10.1137/110847962

    Article  MathSciNet  MATH  Google Scholar 

  21. Pakdaman, K., Perthame, B., Salort, D.: Adaptation and fatigue model for neuron networks and large time asymptotics in a nonlinear fragmentation equation. J. Math. Neurosci. 4, 14 (2014). https://doi.org/10.1186/2190-8567-4-14

    Article  MathSciNet  MATH  Google Scholar 

  22. Perthame, B.: Transport Equations in Biology. Springer, Berlin (2006)

    MATH  Google Scholar 

  23. Perthame, B., Salort, D., Wainrib, G.: Distributed synaptic weights in a lif neural network and learning rules. Phys. D: Nonlinear Phenom. 353, 20–30 (2017)

    Article  MathSciNet  Google Scholar 

  24. Pham, J., Pakdaman, K., Champagnat, J., Vibert, J.F.: Activity in sparsely connected excitatory neural networks: effect of connectivity. Neural Netw. 11(3), 415–434 (1998)

    Article  Google Scholar 

  25. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12(1), 1–24 (1972)

    Article  Google Scholar 

Download references

Funding

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement Number 754362.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Torres.

Ethics declarations

Conflict of interest

Not applicable.

Availability of data and material

Graphics of simulations were generated by the Matlab software.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, N., Salort, D. Dynamics of Neural Networks with Elapsed Time Model and Learning Processes. Acta Appl Math 170, 1065–1099 (2020). https://doi.org/10.1007/s10440-020-00367-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-020-00367-1

Keywords

Mathematics Subject Classification (2010)

Navigation