Skip to main content
Log in

Conditions for Permanence and Ergodicity of Certain SIR Epidemic Models

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper, we study sufficient conditions for the permanence and ergodicity of a stochastic susceptible-infected-recovered (SIR) epidemic model with Beddington-DeAngelis incidence rate in both of non-degenerate and degenerate cases. The conditions obtained in fact are close to the necessary one. We also characterize the support of the invariant probability measure and prove the convergence in total variation norm of the transition probability to the invariant measure. Some of numerical examples are given to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson, R.M., May, R.M.: Infectious Diseases in Humans: Dynamics and Control. Oxford University Press, Oxford (1991)

    Google Scholar 

  2. Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975)

    Article  Google Scholar 

  3. Bellet, L.R.: Ergodic properties of Markov Process. In: Open Quantum Systems II, pp. 1–39. Springer, Berlin (2006)

    Google Scholar 

  4. Capasso, V., Serio, G.: A generalization of the Kermack-McKendrick deterministic epidemic model. Math. Biosci. 42, 41–61 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, L., Sun, J.: Global stability and optimal control of an SIRS epidemic model on heterogeneous networks. Physica A 410, 196–204 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dang, N.H., Yin, G.: Coexistence and exclusion of stochastic competitive Lotka-Volterra models. J. Differ. Equ. 262, 1192–1225 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dang, N.H., Du, N.H., Yin, G.: Existence of stationary distributions for Kolmogorov systems of competitive type under telegraph noise. J. Differ. Equ. 257, 2078–2101 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. DeAngelis, D.L., Goldstein, R.A., O’Neill, R.V.: A model for trophic interaction. Ecology 56, 881–892 (1975)

    Article  Google Scholar 

  9. Dieu, N.T., Nguyen, D.H., Du, N.H., Yin, G.: Classification of asymptotic behavior in a stochastic SIR model. SIAM J. Appl. Dyn. Syst. 15(2), 1062–1084 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dieu, N.T., Nguyen, D.H., Du, N.H., Yin, G.: Protection zones for survival of species in random environment. SIAM J. Appl. Math. 76, 1382–1402 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Du, N.H., Nhu, N.N.: Permanence and extinction of certain stochastic SIR models perturbed by a complex type of noises. Appl. Math. Lett. 64, 223–230 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Du, N.H., Dang, N.H., Yin, G.: Conditions for permanence and ergodicity of certain stochastic predator-prey models. J. Appl. Probab. 53(1), 187–202 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hening, A., Nguyen, D.H.: Coexistence and extinction for stochastic Kolmogorov systems. Ann. Appl. Probab. 28, 1893–1942 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hening, A., Nguyen, D.H., Yin, G.: Stochastic population growth in spatially heterogeneous environments: the density-dependent case. J. Math. Biol. 76, 697–754 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hieu, N.T.; Du, N.H.; Auger, P.; Dang, N.H.: Dynamical behavior of a stochastic SIRS epidemic model. Math. Model. Nat. Phenom. 10, 56–73 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang, G., Wanbiao, M., Yasuhiro, T.: Global properties for virus dynamics model with Beddington-DeAngelis functional response. Appl. Math. Lett. 22(11), 1690–1693 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ichihara, K., Kunita, H.: A classification of the second order degenerate elliptic operators and its probabilistic characterization. Z. Wahrscheinlichkeitstheor. Verw. Geb. 39, 81–84 (1977)

    Article  MATH  Google Scholar 

  19. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, 2nd edn. North-Holland Publishing Co., Amsterdam (1989)

    MATH  Google Scholar 

  20. Jurdjevic, V.: Geometric Control Theory. Cambridge Studies in Advanced Mathematics, vol. 52. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  21. Kaddar, A.: On the dynamics of a delayed SIR epidemic model with a modified saturated incidence rate. Electron. J. Differ. Equ. 2009, 133 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Kaddar, A.: Stability analysis in a delayed SIR epidemic model with a saturated incidence rate. Nonlinear Anal. Model. Control 15(3), 299–306 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Khas’minskii, R.A.: Ergodic properties of recurrent diffusion processes and stabilization of the Cauchy problem for parabolic equations. Theory Probab. Appl. 5, 179–196 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  24. Khas’minskii, R.A.: Stochastic Stability of Differential Equations. Springer, Berlin (2012)

    Book  Google Scholar 

  25. Kliemann, W.: Recurrence and invariant measures for degenerate diffusions. Ann. Probab. 15(2), 690–707 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lahrouz, A., Settati, A.: Qualitative study of a nonlinear stochastic SIRS epidemic system. J. Math. Anal. Appl. 32(6), 992–1008 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Lin, Y., Jiang, D., Jin, M.: Stationary distribution of a stochastic SIR model with saturated incidence rate and its asymptotic. Acta Math. Sci. 35(3), 619–629 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, Z.: Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates. Nonlinear Anal., Real World Appl. 14, 1286–1299 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, Q., Chen, Q.: Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence. Physica A 428, 140–153 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, X., Yang, L.: Stability analysis of an SEIQV epidemic model with saturated incidence rate. Nonlinear Anal., Real World Appl. 13, 2671–2679 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lu, Q.: Stability of SIRS system with random perturbations. Physica A 288, 3677–3686 (2009)

    Article  MathSciNet  Google Scholar 

  32. Meyn, S.P., Tweedie, R.L.: Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Probab. 25, 518–548 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Skorohod, A.V.: Asymptotic Methods in the Theory of Stochastic Differential Equations, vol. 78. Am. Math. Soc., Providence (1989)

    Google Scholar 

  34. Stettner, L.: On the existence and uniqueness of invariant measure for continuous time Markov processes. Technical Report LCDS 86-18, Brown University, Providence, RI (1986)

  35. Yang, Q., Jiang, D., Shi, N., Ji, C.: The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence. J. Math. Anal. Appl. 388(1), 248–271 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yorke, J.A., London, W.P.: Recurrent outbreaks of measles, chickenpox and mumps II. Am. J. Epidemiol. 98, 469–482 (1973)

    Article  Google Scholar 

  37. Zhang, T., Zhidong, T.: Pulse vaccination delayed SEIRS epidemic model with saturation incidence. Appl. Math. Model. 32(7), 1403–1416 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhao, Y., Jiang, D.: The threshold of a stochastic SIRS epidemic model with saturated incidence. Appl. Math. Lett. 34, 90–93 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhou, Y., Zhang, W., Yuan, S., Hu, H.: Persistence and extinction in stochastic SIRS models with general nonlinear incidence rate. Electron. J. Differ. Equ. 2014, 42 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We gratefully thank the reviewers and the editor for their positive and helpful suggestions, which help to improve the presentation of the paper. Authors would like to express our gratitude to Nguyen Hai Dang for his valuable comments which helped to improve the paper. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.03-2017.23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thanh Dieu.

Additional information

Authors would like to thank Vietnam Institute for Advance Study in Mathematics (VIASM) for supporting and providing a fruitful research environment and hospitality.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, N.H., Dieu, N.T. & Nhu, N.N. Conditions for Permanence and Ergodicity of Certain SIR Epidemic Models. Acta Appl Math 160, 81–99 (2019). https://doi.org/10.1007/s10440-018-0196-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-018-0196-8

Keywords

Mathematics Subject Classification

Navigation