Skip to main content
Log in

On the Stability of a SEIR Reaction Diffusion Model for Infections Under Neumann Boundary Conditions

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

This paper deals with a reaction-diffusion SEIR model for infections under homogeneous Neumann boundary conditions. The longtime behaviour of the solutions is analyzed and, in particular, absorbing sets in the phase space are determined. By using a peculiar Lyapunov function, the nonlinear asymptotic stability of endemic equilibrium is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kermack, W., McKendrick, A.: Contributions to the mathematical theory of epidemics (Part I). Proc. R. Soc. A 115, 700–721 (1927)

    Article  MATH  Google Scholar 

  2. Shi, R., Jiang, X., Chen, L.: The effect of impulsive vaccination on an SIR epidemic model. Appl. Math. Comput. 212(2), 305–311 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Wang, J., Zhang, J., Jin, Z.: Analysis of an SIR model with bilinear incidence rate. Nonlinear Anal., Real World Appl. 11(4), 2390–2402 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Rionero, S., Buonomo, B.: On the Lyapunov stability for SIRS epidemic models with general nonlinear incidence rate. Appl. Math. Comput. 217, 4010–4016 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Capasso, V.: Mathematical Structures of Epidemic Systems. Lecture Notes in Biomathematics, vol. 97. Springer, Berlin (1993)

    MATH  Google Scholar 

  6. Capasso, V.: Global solution for a diffusive nonlinear deterministic epidemic model. SIAM J. Appl. Math. 35, 274–284 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  7. Capasso, V., Grosso, E., Serio, G.: I modelli matematici nella indagine epidemiologica. Applicazione all’epidemia di colera verificatasi in Bari nel 1973. Ann. Sclavo 19, 193–208 (1977)

    Google Scholar 

  8. Jin, Y., Wang, W., Xiao, S.: An SIRS model with a nonlinear incidence rate. Math. Biosci. Eng. 1, 361–404 (2004)

    Article  MathSciNet  Google Scholar 

  9. Korobeinikov, A.: Lyapunov functions and global stability for SIR and SIRS epidemiological models with nonlinear transmission. Bull. Math. Biol. 30, 615–626 (2006)

    Article  MathSciNet  Google Scholar 

  10. Korobeinikov, A.: Global properties of infectious disease models with nonlinear incidence. Bull. Math. Biol. 69, 1871–1886 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Rionero, S.: On the nonlinear stability of the critical points of an epidemic SEIR model via a novel Lyapunov function. Rend. Accad. Sci. Fis. Mat. Napoli LXXV, 115–129 (2008)

    MathSciNet  Google Scholar 

  12. Capone, F., De Cataldis, V., De Luca, R.: On the nonlinear stability of an epidemic SEIR reaction diffusion model. Ric. Mat. 62(1), 161–181 (2013)

    Article  MathSciNet  Google Scholar 

  13. Buonomo, B., Lacitignola, D.: On the dynamics of an SEIR epidemic model with a convex incidence rate. Ric. Mat. 57, 261–281 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Buonomo, B., Lacitignola, D.: Global stability for a four dimensional epidemic model. Note Mat. 30(2), 105–121 (2010)

    MATH  MathSciNet  Google Scholar 

  15. Rao, F., Wang, W., Li, Z.: Stability analysis of an epidemic model with diffusion and stochastic perturbation. Commun. Nonlinear Sci. Numer. Simul. 17(1), 2551–2563 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mulone, G., Straughan, B., Wang, W.: Stability of epidemic models with evolution. Stud. Appl. Math. 118(2), 117–132 (2007)

    Article  MathSciNet  Google Scholar 

  17. Capasso, V., Di Liddo, A.: Asymptotic behaviour of reaction-diffusion systems in population and epidemic models. The role of cross diffusion. J. Math. Biol. 32, 453–463 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shuai, Z., van den Driessche, P.: Impact of heterogeneity on the dynamics of an SEIR epidemic model. Math. Biosci. Eng. 9(2), 393–411 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chinviriyasit, S., Chinviriyasit, W.: Numerical modeling of an SIR epidemic model with diffusion. Appl. Math. Comput. 216, 395–409 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Capone, F., Piedisacco, M., Rionero, S.: Nonlinear stability for reaction-diffusion Lotka-Volterra model with Beddington-DeAngelis functional response. Rend. Accad. Sci. Fis. Mat. Napoli LXXIII, 85–97 (2006)

    MathSciNet  Google Scholar 

  21. Capone, F.: Nonlinear stability for reaction-diffusion Lotka-Volterra predator-prey model equations with Holling Type 2 functional response. In: Mathematical Physics Models and Engineering Sciences. Societá Nazionale di Scienze, Lettere e Arti in Napoli, Napoli, pp. 73–84 (2008). Memorie dell’Accademia di Scienze Fisiche e Matematiche

    Google Scholar 

  22. Capone, F.: Diffusion driven stability for Beddington-DeAngelis predator-prey model. In: Manganaro, N., Monaco, R., Rionero, S. (eds.) Proceedings WASCOM 2007, 14th Conference on Waves and Stability in Continuous Media, pp. 96–101. World Scientific, Singapore (2008)

    Chapter  Google Scholar 

  23. Capone, F.: On the dynamics of predator-prey models with the Beddington-De Angelis functional response, under Robin boundary conditions. Ric. Mat. 57, 137–157 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Capone, F., De Luca, R., Rionero, S.: On the stability of non-autonomous perturbed Lotka-Volterra models. Appl. Math. Comput. 219(12), 6868–6881 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rionero, S.: Stability of ternary reaction-diffusion dynamical systems. Rend. Lincei Mat. Appl. 22, 245–268 (2011)

    MATH  MathSciNet  Google Scholar 

  26. Rionero, S.: A peculiar Lyapunov functional for ternary reaction-diffusion dynamical systems. Boll. UMI IV, 393–407 (2011)

    MathSciNet  Google Scholar 

  27. Mora, X.: Semilinear parabolic problems define semiflows on C k spaces. Trans. Am. Math. Soc. 278, 21–55 (1983)

    MATH  MathSciNet  Google Scholar 

  28. Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction-Diffusion Equations. Wiley, Chichester (2003)

    MATH  Google Scholar 

  29. Smoller, J.: Shock Waves and Reaction Diffusion Equations. Springer, Berlin (1967)

    Google Scholar 

Download references

Acknowledgements

This paper has been performed under the auspices of the G.N.F.M. of I.N.d.A.M. and Progetto Giovani G.N.F.M. 2013 “Moti fluidi di miscele in strati porosi, immersi in campi termici non isotermi”. The authors thank gratefully Prof. Rionero for having proposed the research and for his helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. De Cataldis.

Additional information

In honor of Professor Salvatore Rionero, in the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capone, F., De Cataldis, V. & De Luca, R. On the Stability of a SEIR Reaction Diffusion Model for Infections Under Neumann Boundary Conditions. Acta Appl Math 132, 165–176 (2014). https://doi.org/10.1007/s10440-014-9899-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9899-7

Keywords

Navigation