Skip to main content
Log in

Group-Theoretical Analysis of Variable Coefficient Nonlinear Telegraph Equations

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Given a class \(\mathcal{F(\theta)}\) of differential equations with arbitrary element θ, the problems of symmetry group, nonclassical symmetry and conservation law classifications are to determine for each member \(f\in\mathcal{F(\theta)}\) the structure of its Lie symmetry group G f , conditional symmetry Q f and conservation law \(\mathop {\rm CL}\nolimits _{f}\) under some proper equivalence transformations groups.

In this paper, an extensive investigation of these three aspects is carried out for the class of variable coefficient (1+1)-dimensional nonlinear telegraph equations with coefficients depending on the space variable f(x)u tt =(g(x)H(u)u x ) x +h(x)K(u)u x . The usual equivalence group and the extended one including transformations which are nonlocal with respect to arbitrary elements are first constructed. Then using the technique of variable gauges of arbitrary elements under equivalence transformations, we restrict ourselves to the symmetry group classifications for the equations with two different gauges g=1 and g=h. In order to get the ultimate classification, the method of furcate split is also used and consequently a number of new interesting nonlinear invariant models which have non-trivial invariance algebra are obtained. As an application, exact solutions for some equations which are singled out from the classification results are constructed by the classical method of Lie reduction.

The classification of nonclassical symmetries for the classes of differential equations with gauge g=1 is discussed within the framework of singular reduction operator. This enabled to obtain some exact solutions of the nonlinear telegraph equation which are invariant under certain conditional symmetries.

Using the direct method, we also carry out two classifications of local conservation laws up to equivalence relations generated by both usual and extended equivalence groups. Equivalence with respect to these groups and correct choice of gauge coefficients of equations play the major role for simple and clear formulation of the final results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  2. Abramenko, A.A., Lagno, V.I., Samoilenko, A.M.: Group classification of nonlinear evolution equations. II. Invariance under solvable local transformation groups. Differ. Equ. 38, 502–509 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akhatov, I.Sh., Gazizov, R.K., Ibragimov, N.Kh.: Group classification of equation of nonlinear filtration. Dokl. Akad. Nauk SSSR 293, 1033–1035 (1987)

    MathSciNet  Google Scholar 

  4. Akhatov, I.Sh., Gazizov, R.K., Ibragimov, N.Kh.: Nonlocal symmetries. A heuristic approach. Itogi Nauki Tekh., Curr. Probl. Math. Newest Results 34, 3–83 (1989) (Russian, translated in J. Soviet Math., 1991, 55, 1401–1450)

    MathSciNet  MATH  Google Scholar 

  5. Ames, W.F.: Nonlinear Partial Differential Equations in Engineering, vol. 1. Academic Press, New York (1965); vol. 2. Academic Press, New York (1972)

    MATH  Google Scholar 

  6. Ames, W.F., Adams, E., Lohner, R.J.: Group properties of u tt =[f(u)u x ] x . Int. J. Non-Linear Mech. 16, 439–447 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arrigo, D.J.: Group properties of \(u_{xx}-u^{m}_{y}u_{yy} =f(u)\). Int. J. Non-Linear Mech. 26, 619–629 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barone, A., Esposito, F., Magee, C.G., Scott, A.C.: Theory and applications of the sine-Gordon equation. Riv. Nuovo Cimento 1, 227–267 (1971)

    Article  Google Scholar 

  9. Basarab-Horwath, P., Lahno, V.I., Zhdanov, R.Z.: The structure of Lie algebras and the classification problem for partial differential equations. Acta Appl. Math. 69, 43–94 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bluman, G., Anco, S.C.: Symmetry and Integration Methods for Differential Equations. Applied Mathematical Sciences, vol. 154. Springer, New York (2002)

    MATH  Google Scholar 

  11. Bluman, G., Cheviakov, A.F., Ivanova, N.M.: Framework for nonlocally related PDE systems and nonlocal symmetries: Extension, simplification, and examples. J. Math. Phys. 47, 113505 (2006)

    Article  MathSciNet  Google Scholar 

  12. Bluman, G., Cole, J.D.: The general similarity solution of the heat equation. J. Math. Mech. 18, 1025–1042 (1969)

    MathSciNet  MATH  Google Scholar 

  13. Bluman, G., Kumei, S.: Symmetries and Differential Equations. Springer, New York (1989)

    MATH  Google Scholar 

  14. Bluman, G., Temuerchaolu: Comparing symmetries and conservation laws of nonlinear telegraph equations. J. Math. Phys. 46, 073513 (2005)

    Article  MathSciNet  Google Scholar 

  15. Bluman, G., Temuerchaolu: Conservation laws for nonlinear telegraph equations. J. Math. Anal. Appl. 310, 459–476 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Bluman, G., Temuerchaolu, Sahadevan, R.: Local and nonlocal symmetries for nonlinear telegraph equation. J. Math. Phys. 46, 023505 (2005)

    Article  MathSciNet  Google Scholar 

  17. Boyko, V.M., Popovych, V.O.: Group classification of Galilei-invariant higher-orders equations. Proc. Inst. Math. NAS Ukr. 36, 45–50 (2001)

    Google Scholar 

  18. Cattaneo, C.: Sulla conduzione del calore. Atti Semin. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  Google Scholar 

  19. Chikwendu, S.C.: Non-linear wave propagation solutions by Fourier transform perturbation. Int. J. Non-Linear Mech. 16, 117–128 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Clarkson, P.A., Mansfield, E.L.: Symmetry reductions and exact solutions of a class of nonlinear heat equations. Physica D 70, 250–288 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Clarkson, P.A., Winternitz, P.: Nonclassical symmetry reductions for the Kadomtsev-Petviashvili equation. Physica D 49, 257–272 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cristescu, N.: Dynamic Plasticity. North-Holland, Amsterdam (1967)

    MATH  Google Scholar 

  23. Donato, A.: Similarity analysis and nonlinear wave propagation. Int. J. Non-Linear Mech. 22, 307–314 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Donato, A., Fusco, D.: Wave features and infinitesimal group analysis for a second order quasilinear equation in conservative form. Int. J. Non-Linear Mech. 22, 37–46 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. Engelbrecht, J.: Nonlinear Wave Processes of Deformation in Solid. Pitman, London (1983)

    Google Scholar 

  26. Faddeev, L.D., Takhtajan, L.A.: Hamiltonian Method in the Theory of Solitons. Springer, Berlin (1987)

    Google Scholar 

  27. Foursov, M.V., Vorob’ev, E.M.: Solutions of the nonlinear wave equation u tt =(uu x ) x invariant under conditional symmetries. J. Phys. A, Math. Gen. 29, 6363–6373 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fushchych, W.I., Shtelen, W.M., Serov, N.I.: Symmetry Analysis and Exact Solutions of Nonlinear Equations of Mathematical Physics. Kluwer, Dordrecht (1993) (English transl.)

    Google Scholar 

  29. Fushchych, W.I., Shtelen, W.M., Serov, M.I., Popovych, R.O.: Q-conditional symmetry of the linear heat equation. Proc. Acad. Sci. Ukr. 12, 28–33 (1992)

    MathSciNet  Google Scholar 

  30. Fushchych, W.I., Tsyfra, I.M.: On a reduction and solutions of the nonlinear wave equations with broken symmetry. J. Phys. A, Math. Gen. 20, L45–L48 (1987)

    Article  Google Scholar 

  31. Fushchych, W.I., Zhdanov, R.Z.: Conditional symmetry and reduction of partial differential equations. Ukr. Math. J. 44, 970–982 (1992)

    Google Scholar 

  32. Gandarias, M.L., Torrisi, M., Valenti, A.: Symmetry classification and optimal systems of a non-linear wave equation. Int. J. Non-Linear Mech. 39, 389–398 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gagnon, L., Winternitz, P.: Symmetry classes of variable coefficient nonlinear Schrödinger equations. J. Phys. A, Math. Gen. 26, 7061–7076 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gazeau, J.P., Winternitza, P.: Symmetries of variable coefficient Korteweg-de Vries equations. J. Math. Phys. 33, 4087–4102 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Goenner, H., Havas, P.: Exact solutions of the generalized Lane–Emden equation. J. Math. Phys. 41, 7029–7042 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Grundland, A.M., Tafel, J.: On the existence of nonclassical symmetries of partial differential equations. J. Math. Phys. 36, 1426–1434 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Huang, D.J., Ivanova, N.M.: Group analysis and exact solutions of a class of variable coefficient nonlinear telegraph equations. J. Math. Phys. 48, 073507 (2007) (23 pages)

    Article  MathSciNet  Google Scholar 

  38. Huang, D.J., Mei, J.Q., Zhang, H.Q.: Group classification and exact solutions of a class of variable coefficient nonlinear wave equations. Chin. Phys. Lett. 26, 050202 (2009)

    Article  Google Scholar 

  39. Huang, D.J., Zhou, S.G.: Group properties of generalized quasi-linear wave equations. J. Math. Anal. Appl. 366, 460–472 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Huang, D.J., Zhang, H.Q.: Preliminary group classification of quasilinear third-order evolution equations. Appl. Math. Mech. 30(3), 275–292 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Huang, Q., Lahno, V., Qu, C.Z., Zhdanov, R.: Preliminary group classification of a class of fourth-order evolution equations. J. Math. Phys. 50, 023503 (2009)

    Article  MathSciNet  Google Scholar 

  42. Huang, Q., Qu, C.Z., Zhdanov, R.: Nonlocal symmetries of fourth-order nonlinear evolution equations. Rep. Math. Phys. 65, 337–366 (2010). arXiv:0905.2033

    Article  MathSciNet  MATH  Google Scholar 

  43. Ibragimov, N.H.: Transformation Groups Applied to Mathematical Physics. Mathematics and its Applications (Soviet Series). Reidel, Dordrecht (1985)

    MATH  Google Scholar 

  44. Ibragimov, N.H. (ed.): Lie Group Analysis of Differential Equations—Symmetries, Exact Solutions and Conservation Laws, vol. 1. CRC Press, Boca Raton (1994)

    Google Scholar 

  45. Ibragimov, N.H.: Elementary Lie Group Analysis and Ordinary Differential Equations. Wiley, New York (1999)

    MATH  Google Scholar 

  46. Ibragimov, N.H., Torrisi, M., Valenti, A.: Preliminary group classification of equations v tt =f(x,v x )v xx +g(x,v x ). J. Math. Phys. 32, 2988–2995 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ivanova, N.M., Popovych, R.O., Sophocleous, C.: Group analysis of variable coefficient diffusion-convection equations. I. Enhanced group classification. Lobachevskii J. Math. 31(2), 100–122 (2010). arXiv:0710.2731 [math-ph]

    Article  MathSciNet  Google Scholar 

  48. Ivanova, N.M., Popovych, R.O., Sophocleous, C.: Group analysis of variable coefficient diffusion-convection equations. II. Contractions and exact solutions. arXiv:0710.3049 [math-ph]

  49. Ivanova, N.M., Popovych, R.O., Sophocleous, C.: Group analysis of variable coefficient diffusion-convection equations. III. Conservation laws. arXiv:0710.3053 [math-ph]

  50. Ivanova, N.M., Popovych, R.O., Sophocleous, C.: Group analysis of variable coefficient diffusion-convection equations. IV. Potential symmetries. arXiv:0710.4251 [math-ph]

  51. Ivanova, N.M., Sophocleous, C.: On the group classification of variable coefficient nonlinear diffusion–convection equations. J. Comput. Appl. Math. 197, 322–344 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. Kingston, J.G., Sophocleous, C.: On form-preserving point transformations of partial differential equations. J. Phys. A, Math. Gen. 31, 1597–1619 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  53. Katayev, I.G.: Electromagnetic Shock Waves. sIliffe, London (1966)

    Google Scholar 

  54. Keller, J.B., Lu, T.: Periodic vibrations of systems governed by non-linear partial differential equations. Commun. Pure Appl. Math. 19(4), 371–420 (1966)

    Article  MATH  Google Scholar 

  55. Kingston, J.G., Sophocleous, C.: Symmetries and form-preserving transformations of one-dimensional wave equations with dissipation. Int. J. Non-Linear Mech. 36, 987–997 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  56. Kumei, S.: Invariance transformations, invariance group transformations and invariance groups of the sine-Gordon equations. J. Math. Phys. 16, 2461–2468 (1975)

    Article  MathSciNet  Google Scholar 

  57. Kunzinger, M., Popovych, R.O.: Singular reduction operators in two dimensions. J. Phys. A 41, 505201 (2008). 24 pp., arXiv:0808.3577

    Article  MathSciNet  Google Scholar 

  58. Kunzinger, M., Popovych, R.O.: Is a nonclassical symmetry a symmetry. In: Proceedings of 4th Workshop “Group Analysis of Differential Equations and Integrability” (2009). arXiv:0903.0821

    Google Scholar 

  59. Lahno, V.I., Zhdanov, R.Z.: Group classification of nonlinear wave equations. J. Math. Phys. 46, 053301 (2005)

    Article  MathSciNet  Google Scholar 

  60. Lagno, V.I., Samoilenko, A.M.: Group classification of nonlinear evolution equations. I. Invariance under semisimple local transformation groups. Differ. Equ. 38, 384–391 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  61. Levi, D., Winternitz, P.: Non-classical symmetry reduction: example of the Boussinesq equation. J. Phys. A, Math. Gen. 22, 2915–2924 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  62. Lie, S.: On integration of a class of linear partial differential equations by means of definite integrals. In: CRC Handbook of Lie Group Analysis of Differential Equations, vol. 2, pp. 473–508 (1881) (Translation by N.H. Ibragimov of Arch. for Math., Bd. VI, Heft 3, S. 328–368, Kristiania, 1881)

    Google Scholar 

  63. Lisle, I.G.: Equivalence transformations for classes of differential equations. Thesis, University of British Columbia (1992). http://www.ise.canberra.edu.au/mathstat/StaffPages/LisleDissertation.pdf (See also Lisle I.G. and Reid G.J., Symmetry classification using invariant moving frames, ORCCA Technical Report TR-00-08 (University of Western Ontario), http://www.orcca.on.ca/TechReports/2000/TR-00-08.html)

  64. Meleshko, S.V.: Group classification of equations of two-dimensional gas motions. Prikl. Mat. Meh. 58, 56–62 (1994) (in Russian) (translation in J. Appl. Math. Mech. 1994, 58 (1994) 629–635)

    MathSciNet  Google Scholar 

  65. Nikitin, A.G., Popovych, R.O.: Group classification of nonlinear Schrödinger equations. Ukr. Math. J. 53, 1053–1060 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  66. Novikov, S.P., Manakov, S.V., Pitaevskii, L.P., Zacharov, V.E.: Theory of Solitons. The Inverse Scattering Method. Consultants Bureau, New York (1980)

    Google Scholar 

  67. Nucci, M.C.: Nonclassical symmetries as special solutions of heir-equations. J. Math. Anal. Appl. 279, 168–179 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  68. Nucci, M.C., Clarkson, P.A.: The nonclassical method is more general than the direct method for symmetry reductions: an example of the Fitzhugh-Nagumo equation. Phys. Lett. A 164, 49–56 (1992)

    Article  MathSciNet  Google Scholar 

  69. Nucci, M.C., Leach, P.G.L.: The determination of nonlocal symmetries by the technique of reduction of order. J. Math. Anal. Appl. 251, 871–884 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  70. Olver, P.J.: Application of Lie Groups to Differential Equations. Springer, New York (1986)

    Google Scholar 

  71. Oron, A., Rosenau, P.: Some symmetries of the nonlinear heat and wave equations. Phys. Lett. A 118, 172–176 (1986)

    Article  MathSciNet  Google Scholar 

  72. Ovsyannikov, L.V.: Group properties of the nonlinear heat-conduction equation. Dokl. Akad. Nauk SSSR 125, 492–495 (1959) (in Russian)

    MATH  Google Scholar 

  73. Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)

    MATH  Google Scholar 

  74. Patera, J., Winternitz, P.: Subalgebras of real three- and four-dimensional Lie algebras. J. Math. Phys. 18, 1449–1455 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  75. Polyanin, A.D., Zaitsev, V.F.: Handbook of Exact Solutions for Ordinary Differential Equations. Chapman Hall/CRC, Boca Raton (2003)

    MATH  Google Scholar 

  76. Popovych, R.O.: Classification of admissible transformations of differential equations. Collect. Works Inst. Math., Kyiv 3(2), 239–254 (2006)

    MATH  Google Scholar 

  77. Popovych, R.O., Cherniha, R.M.: Complete classification of Lie symmetries of systems of two-dimensional Laplace equations. Proc. Inst. Math. NAS Ukr. 36, 212–221 (2001)

    MathSciNet  Google Scholar 

  78. Popovych, R.O., Ivanova, N.M.: New results on group classification of nonlinear diffusion-convection equations. J. Phys. A, Math. Gen. 37, 7547–7565 (2004). arXiv:math-ph/0306035

    Article  MathSciNet  MATH  Google Scholar 

  79. Popovych, R.O., Ivanova, N.M.: Hierarchy of conservation laws of diffusion–convection equations. J. Math. Phys. 46, 043502 (2005). arXiv:math-ph/0407008

    Article  MathSciNet  Google Scholar 

  80. Popovych, R.O., Ivanova, N.M., Eshraghi, H.: Group classification of (1+1)-dimensional Schrödinger equations with potentials and power nonlinearities. J. Math. Phys. 45, 3049–3057 (2004). math-ph/0311039

    Article  MathSciNet  MATH  Google Scholar 

  81. Popovych, R.O., Kunzinger, M., Eshraghi, H.: Admissible point transformations and normalized classes of nonlinear Schrödinger equations. Acta Appl. Math. 109, 315–359 (2010). arXiv:math-ph/0611061

    Article  MathSciNet  MATH  Google Scholar 

  82. Pucci, E.: Group analysis of the equation u tt +λu xx =g(u,u x ). Riv. Mat. Univ. Parma 12(4), 71–87 (1987)

    MathSciNet  Google Scholar 

  83. Pucci, E., Salvatori, M.C.: Group properties of a class of semilinear hyperbolic equations. Int. J. Non-Linear Mech. 21, 147–155 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  84. Rogers, C., Ruggeri, T.: A reciprocal Bäcklund transformation: application to nonlinear hyperbolic boundary value problems. Lett. Nuovo Cimento 44, 289–296 (1985)

    Article  MathSciNet  Google Scholar 

  85. Stephani, H.: Differential Equation: Their Solution Using Symmetries. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  86. Suhubi, E.S., Bakkaloglu, A.: Group properties and similarity solutions for a quasi-linear wave equation in the plane. Int. J. Non-Linear Mech. 26, 567–584 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  87. Torrisi, M., Valenti, A.: Group properties and invariant solutions for infinitesimal transformations of a nonlinear wave equation. Int. J. Non-Linear Mech. 20, 135–144 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  88. Torrisi, M., Valenti, A.: Group analysis and some solutions of a nonlinear wave equation. Atti Semin. Mat. Fis. Univ. Modena XXXVIII, 445–458 (1990)

    MathSciNet  Google Scholar 

  89. Vaneeva, O.O., Johnpillai, A.G., Popovych, R.O., Sophocleous, C.: Enhanced group analysis and conservation laws of variable coefficient reaction-diffusion equations with power nonlinearities. J. Math. Anal. Appl. 330, 1363–1386 (2007). arXiv:math-ph/0605081

    Article  MathSciNet  MATH  Google Scholar 

  90. Vaneeva, O.O., Popovych, R.O., Sophocleous, C.: Enhanced group analysis and exact solutions of variable coefficient semilinear diffusion equations with a power source. Acta Appl. Math. 106, 1–46 (2009). arXiv:0708.3457

    Article  MathSciNet  MATH  Google Scholar 

  91. Varley, E., Seymour, B.: Exact solutions for large amplitude waves in dispersive and dissipative systems. Stud. Appl. Math. 72, 241–262 (1985)

    MathSciNet  MATH  Google Scholar 

  92. Vasilenko, O.F., Yehorchenko, I.A.: Group classification of multidimensional nonlinear wave equations. Proc. Inst. Math. NAS Ukr. 36, 63–66 (2001)

    Google Scholar 

  93. Zhdanov, R.Z., Lahno, V.I.: Group classification of heat conductivity equations with a nonlinear source. J. Phys. A, Math. Gen. 32, 7405–7418 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  94. Zhdanov, R.Z., Lahno, V.I.: Group classification of the general evolution equation: Local and quasilocal symmetries. In: SIGMA, vol. 1, p. 009 (2005)

    Google Scholar 

  95. Zhdanov, R.Z., Lahno, V.I.: Group classification of the general second-order evolution equation: semisimple invariance groups. J. Phys. A, Math. Theor. 40, 5083–5103 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  96. Zhdanov, R.Z., Tsyfra, I.M., Popovych, R.O.: A precise definition of reduction of partial differential equations. J. Math. Anal. Appl. 238, 101–123 (1999). arXiv:math-ph/0207023

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding-jiang Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Dj., Zhou, S. Group-Theoretical Analysis of Variable Coefficient Nonlinear Telegraph Equations. Acta Appl Math 117, 135–183 (2012). https://doi.org/10.1007/s10440-011-9655-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-011-9655-1

Keywords

Mathematics Subject Classification (2000)

Navigation