Skip to main content
Log in

Modeling Ventilator-Induced Lung Injury and Neutrophil Infiltration to Infer Injury Interdependence

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI) are heterogeneous conditions. The spatiotemporal evolution of these heterogeneities is complex, and it is difficult to elucidate the mechanisms driving its progression. Through previous quantitative analyses, we explored the distributions of cellular injury and neutrophil infiltration in experimental VILI and discovered that VILI progression is characterized by both the formation of new injury in quasi-random locations and the expansion of existing injury clusters. Distributions of neutrophil infiltration do not correlate with cell injury progression and suggest a systemic response. To further examine the dynamics of VILI, we have developed a novel computational model that simulates damage (cellular injury progression and neutrophil infiltration) using a stochastic approach. Optimization of the model parameters to fit experimental data reveals that the range and strength of interdependence between existing and new damaged regions both increase as mechanical ventilation patterns become more injurious. The interdependence of cellular injury can be attributed to mechanical tethering forces, while the interdependence of neutrophils is likely due to longer-range cell signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ware, L. B., and M. A. Matthay. The acute respiratory distress syndrome. N. Engl. J. Med. 342(18):1334–1349, 2000.

    Article  CAS  PubMed  Google Scholar 

  2. Force, A. D. T., et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 307(23):2526–2533, 2012.

    Google Scholar 

  3. Andrade, M. C., et al. Applying positive end-expiratory pressure during mechanical ventilation causes pulmonary redox imbalance and inflammation in rats. Shock. 50(5):572–578, 2018.

    Article  CAS  PubMed  Google Scholar 

  4. Choudhury, S., et al. Mechanisms of early pulmonary neutrophil sequestration in ventilator-induced lung injury in mice. Am. J. Physiol. Lung. Cell Mol. Physiol. 287(5):L902–L910, 2004.

    Article  CAS  PubMed  Google Scholar 

  5. Seah, A. S., et al. Quantifying the roles of tidal volume and PEEP in the pathogenesis of ventilator-induced lung injury. Ann. Biomed. Eng. 39(5):1505–1516, 2011.

    Article  PubMed  Google Scholar 

  6. Slutsky, A. S. Lung injury caused by mechanical ventilation. Chest. 116(Suppl. 1):9S-15S, 1999.

    Article  CAS  PubMed  Google Scholar 

  7. Slutsky, A. S., and Y. Imai. Ventilator-induced lung injury, cytokines, PEEP, and mortality: implications for practice and for clinical trials. Intens. Care Med. 29(8):1218–1221, 2003.

    Article  Google Scholar 

  8. Taskar, V., et al. Surfactant dysfunction makes lungs vulnerable to repetitive collapse and reexpansion. Am. J. Respir. Crit. Care Med. 155:313–320, 1997.

    Article  CAS  PubMed  Google Scholar 

  9. Villar, J., et al. The ALIEN study: incidence and outcome of acute respiratory distress syndrome in the era of lung protective ventilation. Intens. Care Med. 37(12):1932–1941, 2011.

    Article  Google Scholar 

  10. Kaczka, D. W., et al. Quantifying mechanical heterogeneity in canine acute lung injury: impact of mean airway pressure. Anesthesiology. 103(2):306–317, 2005.

    Article  PubMed  Google Scholar 

  11. Sinclair, S. E., N. L. Polissar, and W. A. Altemeier. Spatial distribution of sequential ventilation during mechanical ventilation of the uninjured lung: an argument for cyclical airway collapse and expansion. BMC Pulm. Med. 10:25, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fagerberg, A., et al. Electrical impedence tomography and heterogeneity of pulmonary perfusion and ventilation in porcine acute lung injury. Acta Anaesthesiol. Scand. 53(10):1300–1309, 2009.

    Article  CAS  PubMed  Google Scholar 

  13. Porra, L., et al. Quantitative imaging of regional aerosol deposition, lung ventilation and morphology by synchrotron radiation CT. Sci. Rep. 8(1):3519, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stahr, C. S., et al. Quantification of heterogeneity in lung disease with image-based pulmonary function testing. Sci. Rep. 6:29438, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gattinoni, L., and A. Pesenti. The concept of “baby lung.” Intens. Care Med. 31(6):776–784, 2005.

    Article  Google Scholar 

  16. Perlman, C. E., D. J. Lederer, and J. Bhattacharya. Micromechanics of alveolar edema. Am. J. Respir. Cell Mol. Biol. 44(1):34–39, 2011.

    Article  CAS  PubMed  Google Scholar 

  17. Costa, E. L., et al. Mild endotoxemia during mechanical ventilation produces spatially heterogeneous pulmonary neutrophilic inflammation in sheep. Anesthesiology. 112(3):658–669, 2010.

    Article  PubMed  Google Scholar 

  18. Gajic, O., et al. Ventilator-induced cell wounding and repair in the intact lung. Am. J. Respir. Crit Care Med. 167(8):1057–1063, 2003.

    Article  PubMed  Google Scholar 

  19. Le, A., et al. Alveolar cell apoptosis is dependent on p38 MAP kinase-mediated activation of xanthine oxidoreductase in ventilator-induced lung injury. J. Appl. Physiol. 105(4):1282–1290, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Makena, P. S., et al. Deletion of apoptosis signal-regulating kinase-1 prevents ventilator-induced lung injury in mice. Am. J. Respir. Cell Mol. Biol. 46(4):461–469, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Otto, C.M., et al., Spatial and temporal heterogeneity of ventilator-associated lung injury after surfactant depletion. J. Appl. Physiol. (1985), 2008. 104(5): p. 1485-94.

  22. Sinclair, S. E., et al. Positive end-expiratory pressure alters the severity and spatial heterogeneity of ventilator-induced lung injury: an argument for cyclical airway collapse. J. Crit. Care. 24(2):206–211, 2009.

    Article  PubMed  Google Scholar 

  23. Wellman, T. J., et al. Effect of local tidal lung strain on inflammation in normal and lipopolysaccharide-exposed sheep. Crit. Care Med. 42(7):e491-500, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Motta-Ribeiro, G., et al., Spatial Heterogeneity of Lung Strain and Aeration and Regional Inflammation During Early Lung Injury Assessed with PET/CT. Acad Radiol, 2018.

  25. Paula, L. F., T. J. Wellman, T. Winkler, P. M. Spieth, A. Güldner, J. G. Venegas, M. Gama de Abreu, A. R. Carvalho, and M. F. Vidal Melo. Regional tidal lung strain in mechanically ventilated normal lungs. J. Appl. Physiol. 121(6):1335–47, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yen, S., et al., The Link between Regional Tidal Stretch and Lung Injury during Mechanical Ventilation. Am. J. Respir. Cell Mol. Biol. 0(ja): p. null.

  27. Ma, B. and J.H. Bates, Continuum vs. spring network models of airway-parenchymal interdependence. J. Appl. Physiol. (1985), 2012. 113(1): p. 124-9.

  28. Ma, B., B. Breen, and J. H. Bates. Influence of parenchymal heterogeneity on airway-parenchymal interdependence. Respir. Physiol. Neurobiol. 188(2):94–101, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ma, B., B. J. Smith, and J. H. Bates. Resistance to alveolar shape change limits range of force propagation in lung parenchyma. Respir. Physiol. Neurobiol. 211:22–28, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ma, B. S., and J. H. T. Bates. Mechanical interactions between adjacent airways in the lung. J. Appl. Physiol. 116(6):628–634, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mattson, C.L., et al., Spatiotemporal distribution of cellular injury and leukocytes during the progression of ventilator-induced lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2022; 323(3):281–96

  32. Tsuno, K., et al. Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures. Am. Rev. Respir. Dis. 143(5):1115–1120, 1991.

    Article  CAS  PubMed  Google Scholar 

  33. Villar, J., et al. Experimental ventilator-induced lung injury: exacerbation by positive end-expiratory pressure. Anesthesiology. 110(6):1341–1347, 2009.

    Article  PubMed  Google Scholar 

  34. Hirsch, J., et al. Double impact of cigarette smoke and mechanical ventilation on the alveolar epithelial type II cell. Crit. Care. 18(2):R50, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mattson, C., et al., Spatiotemporal Distribution of Cellular Injury and Leukocytes during the Progression of Ventilator-Induced Lung Injury: Online Supplement. 2022: figshare.

  36. Blanca, M. J., et al. Non-normal data: is ANOVA still a valid option? Psicothema. 29(4):552–557, 2017.

    PubMed  Google Scholar 

  37. Makiyama, A. M., et al. Stress concentration around an atelectatic region: a finite element model. Respir. Physiol. Neurobiol. 201:101–110, 2014.

    Article  CAS  PubMed  Google Scholar 

  38. Albert, R. K., et al. Is progression of pulmonary fibrosis due to ventilation-induced lung injury? Am. J. Respir. Crit. Care Med. 200(2):140–151, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reynolds, A., et al. Cellular automata modeling of pulmonary inflammation. Mol. Cell Biomech. 9(2):141–156, 2012.

    PubMed  Google Scholar 

  40. Ibrahim, I. B. M., O. V. S. Sarma, and R. M. Pidaparti. Simulation of healing threshold in strain-induced inflammation through a discrete informatics model. IEEE J. Biomed. Health Inform. 22(3):935–941, 2018.

    Article  PubMed  Google Scholar 

  41. Wilson, M. R., and M. Takata. Inflammatory mechanisms of ventilator-induced lung injury: a time to stop and think? Anaesthesia. 68(2):175–178, 2013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health Grants R01 HL151630 (“Predicting and Preventing Ventilator-Induced Lung Injury”; to B.J.S.) and F31 HL149268 (“Spatiotemporal evolution of lung injury during ventilator-induced lung injury”; to C.L.M.); and National Science Foundation Grant 2225554 (‘”RECODE: Defining Environmental Design Criteria for Directed Differentiation of Type 1 from Type 2 Lung Alveolar Epithelial Cells,” to B.J.S and C.L.M.). This work used the computing resources at the Center for Computational Mathematics, University of Colorado Denver, including the Alderaan cluster, supported by the National Science Foundation award OAC-2019089.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradford J. Smith.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Associate Editor Merryn Tawhai oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 6275 kb)

Supplementary file2 (MP4 6356 kb)

Supplementary file3 (DOCX 173 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattson, C.L., Smith, B.J. Modeling Ventilator-Induced Lung Injury and Neutrophil Infiltration to Infer Injury Interdependence. Ann Biomed Eng 51, 2837–2852 (2023). https://doi.org/10.1007/s10439-023-03346-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03346-3

Keywords

Navigation