Skip to main content

Advertisement

Log in

Electroporation-Based Biopsy Treatment Planning with Numerical Models and Tissue Phantoms

  • S.I.: Electroporation for Medical Applications and Biotechnology
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Molecular sampling with vacuum-assisted tissue electroporation is a novel, minimally invasive method for molecular profiling of solid lesions. In this paper, we report on the design of the battery-powered pulsed electric field generator and electrode configuration for an electroporation-based molecular sampling device for skin cancer diagnostics. Using numerical models of skin electroporation corroborated by the potato tissue phantom model, we show that the electroporated tissue volume, which is the maximum volume for biomarker sampling, strongly depends on the electrode’s geometry, needle electrode skin penetration depths, and the applied pulsed electric field protocol. In addition, using excised human basal cell carcinoma (BCC) tissues, we show that diffusion of proteins out of human BCC tissues into water strongly depends on the strength of the applied electric field and on the time after the field application. The developed numerical simulations, confirmed by experiments in potato tissue phantoms and excised human cancer lesions, provide essential tools for the development of electroporation-based molecular markers sampling devices for personalized skin cancer diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dua, R., D. G. Beetner, W. V. Stoecker, and D. C. Wunsch. Detection of basal cell carcinoma using electrical impedance and neural networks. IEEE Trans. Biomed. Eng. 51:66–71, 2004.

    Article  PubMed  Google Scholar 

  2. Doran, C. M., et al. Estimating the economic costs of skin cancer in New South Wales, Australia. BMC Public Health. 15:952, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mofidi, A., et al. The economic burden of occupational non-melanoma skin cancer due to solar radiation. J. Occup. Environ. Hyg. 15:481–491, 2018.

    Article  PubMed  Google Scholar 

  4. Chan, B. A., and B. G. M. Hughes. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl. Lung Cancer Res. 4:36–54, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Augustine, R., et al. 3D bioprinted cancer models: revolutionizing personalized cancer therapy. Transl. Oncol.14:101015, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cipriani, C., et al. Personalized irradiation therapy for NMSC by rhenium-188 skin cancer therapy: a long-term retrospective study. J. Dermatol. Treat. 33:969–975, 2022.

    Article  CAS  Google Scholar 

  7. Smit, A. K., et al. Impact of personal genomic risk information on melanoma prevention behaviors and psychological outcomes: a randomized controlled trial. Genet. Med. 23:2394–2403, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Coleman, A. J., et al. Histological correlates of optical coherence tomography in non-melanoma skin cancer. Skin Res. Technol. 19:e10–e19, 2013.

    Article  Google Scholar 

  9. Borsari, S., et al. Clinical indications for use of reflectance confocal microscopy for skin cancer diagnosis. JAMA Dermatol. 152:1093–1098, 2016.

    Article  PubMed  Google Scholar 

  10. Ibrahim, O., B. Gastman, and A. Zhang. Advances in diagnosis and treatment of nonmelanoma skin cancer. Ann. Plast. Surg. 73(5):615–619, 2014.

    Article  CAS  PubMed  Google Scholar 

  11. Chen, Z.-T., et al. High-frequency ultrasound for differentiation between high-risk basal cell carcinoma and cutaneous squamous cell carcinoma. Skin Res. Technol. 28:410–418, 2022.

    Article  CAS  PubMed  Google Scholar 

  12. Qin, J., et al. Usefulness of high-frequency ultrasound in differentiating basal cell carcinoma from common benign pigmented skin tumors. Skin Res. Technol. 27:766–773, 2021.

    Article  PubMed  Google Scholar 

  13. Elston, D. M., E. J. Stratman, and S. J. Miller. Skin biopsy: biopsy issues in specific diseases. J. Am. Acad. Dermatol. 74:1–16, 2016.

    Article  PubMed  Google Scholar 

  14. Longo, C., et al. Classifying distinct basal cell carcinoma subtype by means of dermatoscopy and reflectance confocal microscopy. J. Am. Acad. Dermatol. 71:716-724.e1, 2014.

    Article  PubMed  Google Scholar 

  15. Gerlach, S., et al. Needle insertion planning for obstacle avoidance in robotic biopsy. Curr. Dir. Biomed. Eng. 7:779–782, 2021.

    Article  Google Scholar 

  16. Daskalopoulou, D., et al. Cytologically interesting cases of primary skin tumors and tumor-like conditions identified by fine-needle aspiration biopsy. Diagn. Cytopathol. 19:17–28, 1998.

    Article  CAS  PubMed  Google Scholar 

  17. Yarmush, M. L., A. Golberg, G. Serša, T. Kotnik, and D. Miklavčič. Electroporation-based technologies for medicine: principles, applications, and challenges. Annu. Rev. Biomed. Eng. 16:295–320, 2014.

    Article  CAS  PubMed  Google Scholar 

  18. Golberg, A., J. Sheviryov, O. Solomon, L. Anavy, and Z. Yakhini. Molecular harvesting with electroporation for tissue profiling. Sci. Rep. 9:15750, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Genish, I., et al. Electroporation-based proteome sampling ex vivo enables the detection of brain melanoma protein signatures in a location proximate to visible tumor margins. PLoS ONE. 2022. https://doi.org/10.1371/journal.pone.0265866.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vitkin, E., et al. Molecular harvesting of proteins with electroporation in vivo facilitates the profiling of spatial differential protein expression in tumors. Sci. Rep. 2022. https://doi.org/10.1038/s41598-022-19984-x.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vitkin, E., et al. Proteome sampling with e-biopsy enables differentiation between cutaneous squamous cell carcinoma and basal cell carcinoma. medRxiv. 2022. https://doi.org/10.1101/2022.12.22.22283845.

    Article  Google Scholar 

  22. Daugimont, L., et al. Hollow microneedle arrays for intradermal drug delivery and DNA electroporation. J. Membr. Biol. 236:117–125, 2010.

    Article  CAS  PubMed  Google Scholar 

  23. Quaglino, P., et al. Electrochemotherapy with intravenous bleomycin in the local treatment of skin melanoma metastases. Ann. Surg. Oncol. 15:2215, 2008.

    Article  CAS  PubMed  Google Scholar 

  24. Golberg, A., et al. Skin regeneration with all accessory organs following ablation with irreversible electroporation. J. Tissue Eng. Regen. Med. 12:98–113, 2018.

    Article  CAS  PubMed  Google Scholar 

  25. Castiello, M., et al. A new grid electrode for electrochemotherapy treatment of large skin tumors. IEEE Trans. Dielectr. Electr. Insul. 21:1424–1432, 2014.

    Article  Google Scholar 

  26. Cvetkoska, A., E. Pírc, M. Reberšek, R. Magjarević, and D. Míklavčič. Towards standardization of electroporation devices and protocols. IEEE Instrum. Meas. Mag. 23:74–81, 2020.

    Article  Google Scholar 

  27. Bertacchini, C., et al. Design of an irreversible electroporation system for clinical use. Technol. Cancer Res. Treat. 6:313–320, 2007.

    Article  PubMed  Google Scholar 

  28. Campana, L. G., F. Dughiero, M. Forzan, C. R. Rossi, and E. Sieni. A prototype of a flexible grid electrode to treat widespread superficial tumors by means of Electrochemotherapy. Radiol. Oncol. 50:49–57, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Golberg, A., et al. Preventing scars after injury with partial irreversible electroporation. J. Investig. Dermatol. 136:2297–2304, 2016.

    Article  CAS  PubMed  Google Scholar 

  30. Golberg, A., et al. Pulsed electric fields for burn wound disinfection in a murine model. J. Burn Care Res. 36:7–13, 2015.

    Article  PubMed  Google Scholar 

  31. Golberg, A., et al. Skin rejuvenation with non-invasive pulsed electric fields. Sci. Rep. 5:1–18, 2015.

    Article  Google Scholar 

  32. Lin, F., et al. A novel prototype device for electroporation-enhanced DNA vaccine delivery simultaneously to both skin and muscle. Vaccine. 29:6771–6780, 2011.

    Article  CAS  PubMed  Google Scholar 

  33. Ghosh, S., A. Gillis, J. Sheviryov, K. Levkov, and A. Golberg. Towards waste meat biorefinery: extraction of proteins from waste chicken meat with non-thermal pulsed electric fields and mechanical pressing. J. Clean. Prod. 208:220–231, 2019.

    Article  CAS  Google Scholar 

  34. Golberg, A., J. Sheviryov, O. Solomon, L. Anavy, and Z. Yakhini. Molecular harvesting with electroporation for tissue profiling. Sci. Rep. 2019. https://doi.org/10.1038/s41598-019-51634-7.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Agnass, P., et al. Mathematical modeling of the thermal effects of irreversible electroporation for in vitro, in vivo, and clinical use: a systematic review. Int. J. Hyperth. 37:486–505, 2020.

    Article  Google Scholar 

  36. Beitel-White, N., et al. Multi-tissue analysis on the impact of electroporation on electrical and thermal properties. IEEE Trans. Biomed. Eng. 68(3):771–782, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Čorović, S., L. M. Mir, and D. Miklavčič. In vivo muscle electroporation threshold determination: realistic numerical models and in vivo experiments. J. Membr. Biol. 245:509–520, 2012.

    Article  PubMed  Google Scholar 

  38. Davalos, R. V., B. Rubinsky, and L. M. Mir. Theoretical analysis of the thermal effects during in vivo tissue electroporation. Bioelectrochemistry. 61:99–107, 2003.

    Article  CAS  PubMed  Google Scholar 

  39. Yarmolenko, P. S., et al. Thresholds for thermal damage to normal tissues: an update. Int. J. Hyperth. 2011. https://doi.org/10.3109/02656736.2010.534527.

    Article  Google Scholar 

  40. Kranjc, M., F. Bajd, I. Serša, M. de Boevere, and D. Miklavčič. Electric field distribution in relation to cell membrane electroporation in potato tuber tissue studied by magnetic resonance techniques. Innov. Food Sci. Emerg. Technol. 37:384–390, 2016.

    Article  CAS  Google Scholar 

  41. Isles, M. G., C. McConkey, and H. M. Mehanna. A systematic review and meta-analysis of the role of positron emission tomography in the follow up of head and neck squamous cell carcinoma following radiotherapy or chemoradiotherapy. Clin. Otolaryngol. 33:210–222, 2008.

    Article  CAS  PubMed  Google Scholar 

  42. Pavšelj, N., and D. Miklavčič. Numerical modeling in electroporation-based biomedical applications. Radiol. Oncol. 42:159–168, 2008.

    Article  Google Scholar 

  43. Rubinsky, B. Irreversible electroporation in medicine. Technol. Cancer Res. Treat. 6:255–260, 2007.

    Article  PubMed  Google Scholar 

  44. Golberg, A., and B. Rubinsky. A statistical model for multidimensional irreversible electroporation cell death in tissue. Biomed. Eng. Online. 9:13, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Maor, E., A. Ivorra, and B. Rubinsky. Non thermal irreversible electroporation: novel technology for vascular smooth muscle cells ablation. PLoS ONE. 2009. https://doi.org/10.1371/journal.pone.0004757.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rubinsky, B., G. Onik, and P. Mikus. Irreversible electroporation: a new ablation modality—clinical implications. Technol. Cancer Res. Treat. 6:37–48, 2007.

    Article  PubMed  Google Scholar 

  47. Neal, R. E., P. A. Garcia, J. L. Robertson, and R. V. Davalos. Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning. IEEE Trans. Biomed. Eng. 59:1076–1085, 2012.

    Article  PubMed  Google Scholar 

  48. Ivorra, A., L. M. Mir, and B. Rubinsky. Electric field redistribution due to conductivity changes during tissue electroporation: experiments with a simple vegetal model. In: IFMBE Proceedings, vol. 25, 2009.

  49. Hjouj, M., and B. Rubinsky. Magnetic resonance imaging characteristics of nonthermal irreversible electroporation in vegetable tissue. J. Membr. Biol. 236:137–146, 2010.

    Article  CAS  PubMed  Google Scholar 

  50. Lee, E. W., C. T. Loh, and S. T. Kee. Imaging guided percutaneous irreversible electroporation: ultrasound and immunohistological correlation. Technol. Cancer Res. Treat. 6:287–293, 2007.

    Article  PubMed  Google Scholar 

  51. Rubinsky, B., G. Onik, and P. Mikus. Irreversible electroporation: a new ablation modality—clinical implications. Technol. Cancer Res. Treat. 6(1):37–48, 2007. https://doi.org/10.1177/153303460700600106.

    Article  PubMed  Google Scholar 

  52. Onik, G., P. Mikus, and B. Rubinsky. Irreversible electroporation: implications for prostate ablation. Technol. Cancer Res. Treat. 6:295–300, 2007.

    Article  PubMed  Google Scholar 

  53. Wardhana, G., J. P. Almeida, M. Abayazid, and J. J. Fütterer. Development of a thermal model for irreversible electroporation: an approach to estimate and optimize the IRE protocols. Int. J. Comput. Assist. Radiol. Surg. 16(8):1325–1334, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Miklovic, T., E. L. Latouche, M. R. DeWitt, R. V. Davalos, and M. B. Sano. A comprehensive characterization of parameters affecting high-frequency irreversible electroporation lesions. Ann. Biomed. Eng. 45(11):2524–2534, 2017.

    Article  PubMed  Google Scholar 

  55. Jeong, S., et al. Evaluation of electroporated area using 2,3,5-triphenyltetrazolium chloride in a potato model. Sci. Rep. 2021. https://doi.org/10.1038/s41598-021-99987-2.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yao, C., Y. Lv, S. Dong, Y. Zhao, and H. Liu. Irreversible electroporation ablation area enhanced by synergistic high-and low-voltage pulses. PLoS ONE. 2017. https://doi.org/10.1371/journal.pone.0173181.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Luo, X., Y. Zhou, T. Smart, D. Grossman, and B. Sanchez. Electrical characterization of basal cell carcinoma using a handheld electrical impedance dermography device. JID Innov.2:100075, 2022.

    Article  PubMed  Google Scholar 

  58. Sieni, E., et al. Effect of tissue inhomogeneity on electric field intensity for electrochemotherapy treatment. In: 2018 Electrostatics Joint Conference: Electrostatics Society of America, Boston, MA, USA, 2018, pp. 1–10.

  59. Yarmush, M. L., A. Golberg, T. Kotnik, and D. Miklavčič. Electroporation-based technologies for medicine: principles, applications, and challenges. Annu. Rev. Biomed. Eng. 2014. https://doi.org/10.1146/annurev-bioeng-071813-104622.

    Article  PubMed  Google Scholar 

  60. Golberg, A., and B. Rubinsky. Towards electroporation based treatment planning considering electric field induced muscle contractions. Technol. Cancer Res. Treat. 11:189–201, 2012.

    Article  PubMed  Google Scholar 

  61. Garcia, P. A., et al. Predictive therapeutic planning for irreversible electroporation treatment of spontaneous malignant glioma. Med. Phys. 44:4968–4980, 2017.

    Article  CAS  PubMed  Google Scholar 

  62. Kos, B., et al. Robustness of treatment planning for electrochemotherapy of deep-seated tumors. J. Membr. Biol. 236:147–153, 2010.

    Article  CAS  PubMed  Google Scholar 

  63. Groselj, A., et al. Coupling treatment planning with navigation system: a new technological approach in treatment of head and neck tumors by electrochemotherapy. Biomed. Eng. Online. 14:S2, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zupanic, A., B. Kos, and D. Miklavcic. Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation. Phys. Med. Biol. 2012. https://doi.org/10.1088/0031-9155/57/17/5425.

    Article  PubMed  Google Scholar 

  65. Kos, B., P. Voigt, D. Miklavcic, and M. Moche. Careful treatment planning enables safe ablation of liver tumors adjacent to major blood vessels by percutaneous irreversible electroporation (IRE). Radiol. Oncol. 49:234–241, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the Israel Ministry of Science and Technology, the TAU SPARK Fund, the TAU Zimin Center for Technologies for Better Life, and the EuroNanoMed MATISSE Project for their support.

Author information

Authors and Affiliations

Authors

Contributions

BG: experiment, numerical modeling, manuscript drafting, KL: engineering, device development, experiment, AB: experiments, samples collection, pathology, clinics, EV: statistical analysis, OS: experiments, samples collection, pathology, clinics, JW: experiments, protein sampling, and analysis, AS: conceptualization, critical manuscript review, AG: conceptualization, experiment, data analysis, manuscript drafting.

Corresponding author

Correspondence to Alexander Golberg.

Ethics declarations

Conflict of interest

A patent application was filed to protect the electroporation-based sampling technology described herein as invented by AG, JW, EV, AS, KL. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Associate Editor Rafael Vidal Davalos oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Online Supplementary materials

https://github.com/GolbergLab/eBiopsyDeviceModels.git.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 994 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabay, B., Levkov, K., Berl, A. et al. Electroporation-Based Biopsy Treatment Planning with Numerical Models and Tissue Phantoms. Ann Biomed Eng 52, 71–88 (2024). https://doi.org/10.1007/s10439-023-03208-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03208-y

Keywords

Navigation