Skip to main content
Log in

Quantifying the Multidimensional Impedance of the Shoulder During Volitional Contractions

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The neuromuscular control of the shoulder requires regulation of 3D joint mechanics, but it is unknown how these mechanics vary during tasks that load the shoulder in different directions. The purpose of this study was to quantify how the 3D mechanics of the shoulder change with voluntary torque production. Eleven participants produced voluntary isometric torques in one of six directions along three measurement axes. Impedance was estimated by applying small, pseudorandom angular perturbations about the shoulder as participants maintained steady state torques. The nonparametric impedance frequency response functions estimated from the data were parameterized by a collection of second-order linear systems to model the 3D inertia, viscosity, and stiffness of the shoulder. Each component of the 3D stiffness matrix scaled linearly with volitional torque production. Viscosity also increased monotonically with torque but nonlinearly. The directions of maximal stiffness and viscosity were consistently aligned towards the direction of torque production. Further, the shoulder was least stiff and least viscous in the direction of internal/external rotation, suggesting it may be more prone to injury along this axis. These experimental findings and the corresponding mathematical model summarizing our results provide novel insights into how the neuromuscular system regulates 3D shoulder mechanics in response to volitional muscle activations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Ackland, D. C., and M. G. Pandy. Lines of action and stabilizing potential of the shoulder musculature. J Anat 215:184–197, 2009.

    Article  Google Scholar 

  2. Ackland, D. C., and M. G. Pandy. Moment arms of the shoulder muscles during axial rotation. J Orthop Res 29:658–667, 2011.

    Article  Google Scholar 

  3. Bigliani, L. U., R. Kelkar, E. L. Flatow, R. G. Pollock, and V. C. Mow. Glenohumeral stability. Biomechanical properties of passive and active stabilizers. Clin Orthop Relat Res 330:13–30, 1996.

    Article  Google Scholar 

  4. Blasier, R. B., L. J. Soslowsky, D. M. Malicky, and M. L. Palmer. Posterior glenohumeral subluxation: active and passive stabilization in a biomechanical model. J Bone Joint Surg Am 79:433–440, 1997.

    Article  CAS  Google Scholar 

  5. Charles, S. K., and N. Hogan. Stiffness, not inertial coupling, determines path curvature of wrist motions. J Neurophysiol 107:1230–1240, 2012.

    Article  Google Scholar 

  6. Diefenbach, B. J., and D. B. Lipps. Postural differences in shoulder dynamics during pushing and pulling. J Biomech 85:67–73, 2019.

    Article  Google Scholar 

  7. Drake, W. B., and S. K. Charles. Passive stiffness of coupled wrist and forearm rotations. Ann Biomed Eng 42:1853–1866, 2014.

    Article  Google Scholar 

  8. Erdmann, W. S. Geometry and inertia of the human body-review of research. Acta Bioeng Biomech 1:23–35, 1999.

    Google Scholar 

  9. Flash, T., and F. Mussa-Ivaldi. Human arm stiffness characteristics during the maintenance of posture. Exp Brain Res 82:315–326, 1990.

    Article  CAS  Google Scholar 

  10. Franklin, D. W., G. Liaw, T. E. Milner, R. Osu, E. Burdet, and M. Kawato. Endpoint stiffness of the arm is directionally tuned to instability in the environment. J Neurosci 27:7705–7716, 2007.

    Article  CAS  Google Scholar 

  11. Gomi, H., and R. Osu. Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments. J Neurosci 18:8965–8978, 1998.

    Article  CAS  Google Scholar 

  12. Hegedus, E. J., A. P. Goode, C. E. Cook, L. Michener, C. A. Myer, D. M. Myer, and A. A. Wright. Which physical examination tests provide clinicians with the most value when examining the shoulder? Update of a systematic review with meta-analysis of individual tests. Br J Sports Med 46:964–978, 2012.

    Article  Google Scholar 

  13. Hogan, N. The mechanics of multi-joint posture and movement control. Biol Cybern 52:315–331, 1985.

    Article  CAS  Google Scholar 

  14. Holzbaur, K. R., W. M. Murray, and S. L. Delp. A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann Biomed Eng 33:829–840, 2005.

    Article  Google Scholar 

  15. Hu, X., W. M. Murray, and E. J. Perreault. Muscle short-range stiffness can be used to estimate the endpoint stiffness of the human arm. J Neurophysiol 105:1633–1641, 2011.

    Article  Google Scholar 

  16. Kearney, R. E., and I. W. Hunter. System identification of human joint dynamics. Crit Rev Biomed Eng 18:55–87, 1990.

    CAS  PubMed  Google Scholar 

  17. Krutky, M. A., R. D. Trumbower, and E. J. Perreault. Influence of environmental stability on the regulation of end-point impedance during the maintenance of arm posture. J Neurophysiol 109:1045–1054, 2013.

    Article  Google Scholar 

  18. Kuechle, D. K., S. R. Newman, E. Itoi, B. F. Morrey, and K. N. An. Shoulder muscle moment arms during horizontal flexion and elevation. J Shoulder Elbow Surg 6:429–439, 1997.

    Article  CAS  Google Scholar 

  19. Lee, H., P. Ho, M. Rastgaar, H. Krebs, and N. Hogan. Multivariable static ankle mechanical impedance with active muscles. IEEE Trans Neural Syst Rehabil Eng 22:44–52, 2013.

    PubMed  Google Scholar 

  20. Ludvig, D., M. Plocharski, P. Plocharski, and E. J. Perreault. Mechanisms contributing to reduced knee stiffness during movement. Exp Brain Res 235:2959–2970, 2017.

    Article  Google Scholar 

  21. Mussa-Ivaldi, F. A., N. Hogan, and E. Bizzi. Neural, mechanical, and geometric factors subserving arm posture in humans. J Neurosci 5:2732–2743, 1985.

    Article  CAS  Google Scholar 

  22. O’Brien, S. J., R. S. Schwartz, R. F. Warren, and P. A. Torzilli. Capsular restraints to anterior-posterior motion of the abducted shoulder: a biomechanical study. J Shoulder Elbow Surg 4:298–308, 1995.

    Article  Google Scholar 

  23. Perreault, E. J., R. F. Kirsch, and A. M. Acosta. Multiple-input, multiple-output system identification for characterization of limb stiffness dynamics. Biol Cybern 80:327–337, 1999.

    Article  CAS  Google Scholar 

  24. Perreault, E. J., R. F. Kirsch, and P. E. Crago. Effects of voluntary force generation on the elastic components of endpoint stiffness. Exp Brain Res 141:312–323, 2001.

    Article  CAS  Google Scholar 

  25. Perreault, E. J., R. F. Kirsch, and P. E. Crago. Multijoint dynamics and postural stability of the human arm. Exp Brain Res 157:507–517, 2004.

    Article  Google Scholar 

  26. Pfeifer, S., H. Vallery, M. Hardegger, R. Riener, and E. J. Perreault. Model-based estimation of knee stiffness. IEEE Trans Biomed Eng 59:2604–2612, 2012.

    Article  Google Scholar 

  27. Vastamaki, H., and M. Vastamaki. Postoperative stiff shoulder after open rotator cuff repair: a 3- to 20-year follow-up study. Scand J Surg 103:263–270, 2014.

    Article  CAS  Google Scholar 

  28. Veeger, H. E., and F. C. van der Helm. Shoulder function: the perfect compromise between mobility and stability. J Biomech 40:2119–2129, 2007.

    Article  CAS  Google Scholar 

  29. Walia, P., R. M. Patel, L. Gottschalk, M. Kuklis, M. H. Jones, S. D. Fening, and A. Miniaci. The reduction in Stability from combined humeral head and glenoid bony defects is influenced by arm position. Am J Sports Med 44:715–722, 2016.

    Article  Google Scholar 

  30. Ward, S. R., E. R. Hentzen, L. H. Smallwood, R. K. Eastlack, K. A. Burns, D. C. Fithian, J. Friden, and R. L. Lieber. Rotator cuff muscle architecture: implications for glenohumeral stability. Clin Orthop Relat Res 448:157–163, 2006.

    Article  Google Scholar 

  31. Weiss, P. L., I. W. Hunter, and R. E. Kearney. Human ankle joint stiffness over the full range of muscle activation levels. J Biomech 21:539–544, 1988.

    Article  CAS  Google Scholar 

  32. Winter, D. A. Biomechanics and motor control of human movement. New Jersey: Wiley, 2009.

    Book  Google Scholar 

  33. Wu, G., F. C. van der Helm, H. E. Veeger, M. Makhsous, P. Van Roy, C. Anglin, J. Nagels, A. R. Karduna, K. McQuade, X. Wang, F. W. Werner, and B. Buchholz. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion-Part II: shoulder, elbow, wrist and hand. J Biomech 38:981–992, 2005.

    Article  CAS  Google Scholar 

  34. Zhang, L. Q., G. H. Portland, G. Wang, C. A. DiRaimondo, G. W. Nuber, M. K. Bowen, and R. W. Hendrix. Stiffness, viscosity, and upper-limb inertia about the glenohumeral abduction axis. J Orthop Res 18:94–100, 2000.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Timothy Haswell and Hyunglae Lee for their technical assistance and Sanford Mouch for his assistance with data processing. Support for this work was provided by NIH T32-HD07418 and R01-NS053813.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Lipps.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 617 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipps, D.B., Baillargeon, E.M., Ludvig, D. et al. Quantifying the Multidimensional Impedance of the Shoulder During Volitional Contractions. Ann Biomed Eng 48, 2354–2369 (2020). https://doi.org/10.1007/s10439-020-02509-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02509-w

Keywords

Navigation