Skip to main content
Log in

Modeling of the Instantaneous Transvalvular Pressure Gradient in Aortic Stenosis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The simplified and modified Bernoulli equations break down in estimating the true pressure gradient across the stenotic aortic valve due to their over simplifying assumptions of steady and inviscid conditions as well as the fundamental nature in which aortic valves are different than idealized orifices. Nevertheless, despite having newer models based on time-dependent momentum balance across an orifice, the simplified and modified Bernoulli continue to be the clinical standard because to date, they remain the only models clinically implementable. The objective of this study is to (1) illustrate the fundamental considerations necessary to accurately model the time-dependent instantaneous pressure gradient across a fixed orifice and (2) propose empirical corrections when applying orifice based models to severely stenotic aortic valves. We introduce a general model to predict the time-dependent instantaneous pressure gradient across an orifice that explicitly model the Reynolds number dependence of both the steady and unsteady terms. The accuracy of this general model is assessed with respect to previous models through pulse duplicator experiments on a round orifice model as well as an explanted stenotic surgical aortic valve both with geometric areas of 0.6 cm2 (less than 1 cm2 which is the threshold for stenosis determination) over cardiac outputs of 3 and 5 L/min and heart rates of 60, 90 and 120 bpm. The model and the raw experimental data corresponding to the orifice showed good agreement over a wide range of cardiac outputs and heart rates (R2 exceeding 0.91). The derived average and peak transvalvular pressure gradients also demonstrated good agreement with no significant differences between the respective peaks (p > 0.09). The new model proposed holds promise with its physical and closed form representation of pressure drop, however accurate modeling of the time-variability of the valve area is necessary for the model to be applied on stenotic valves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Abbreviations

PG:

Pressure gradient

BPS:

Beats per second

bpm:

Beats per minute

HR:

Heart rate

CO:

Cardiac output

EOA:

Effective orifice area

Re:

Reynolds number

References

  1. Baumgartner, H., J. Hung, J. Bermejo, J. B. Chambers, A. Evangelista, B. P. Griffin, B. Iung, C. M. Otto, P. A. Pellikka, and M. Quiñones. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J. Am. Soc. Echocardiogr. 22(1):1–23, 2009.

    Article  PubMed  Google Scholar 

  2. Baumgartner, H., T. Stefenelli, J. Niederberger, H. Schima, and G. Maurer. “Overestimation” of catheter gradients by Doppler ultrasound in patients with aortic stenosis: a predictable manifestation of pressure recovery. J. Am. Coll. Cardiol. 33(6):1655–1661, 1999.

    Article  CAS  PubMed  Google Scholar 

  3. Berger, M., R. L. Berdoff, P. E. Gallerstein, and E. Goldberg. Evaluation of aortic stenosis by continuous wave Doppler ultrasound. J. Am. Coll. Cardiol. 3(1):150–156, 1984.

    Article  CAS  PubMed  Google Scholar 

  4. Bermejo, J., J. C. Antoranz, I. G. Burwash, J. Alvarez, M. Moreno, M. A. García-Fernández, and C. M. Otto. In-vivo analysis of the instantaneous transvalvular pressure difference-flow relationship in aortic valve stenosis: implications of unsteady fluid-dynamics for the clinical assessment of disease severity. J. Heart Valve Dis. 11(4):557–566, 2002.

    PubMed  Google Scholar 

  5. Carabello, B. A. Advances in the Hemodynamic Assessment of Stenotic Cardiac Valves. Amsterdam: Elsevier, 1987.

    Book  Google Scholar 

  6. Chandran, K. B., S. E. Rittgers, and A. P. Yoganathan. Biofluid Mechanics: The Human Circulation. Boca Raton: CRC Press, 2012.

    Book  Google Scholar 

  7. Clark, C. Relation between pressure difference across the aortic valve and left ventricular outflow. Cardiovasc. Res. 12(5):276–287, 1978.

    Article  CAS  PubMed  Google Scholar 

  8. Dasi, L. P., H. A. Simon, P. Sucosky, and A. P. Yoganathan. Fluid mechanics of artificial heart valves. Clin. Exp. Pharmacol. Physiol. 36(2):225–237, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. DeGroff, C. G., R. Shandas, and L. Valdes-Cruz. Analysis of the effect of flow rate on the Doppler continuity equation for stenotic orifice area calculations: a numerical study. Circulation 97(16):1597–1605, 1998.

    Article  CAS  PubMed  Google Scholar 

  10. Fusman, B., D. Faxon, and T. Feldman. Hemodynamic rounds: Transvalvular pressure gradient measurement. Catheter. Cardiovasc. Interv. 53(4):553–561, 2001.

    Article  CAS  PubMed  Google Scholar 

  11. Garcia, D., L. Kadem, D. Savéry, P. Pibarot, and L.-G. Durand. Analytical modeling of the instantaneous maximal transvalvular pressure gradient in aortic stenosis. J. Biomech. 39(16):3036–3044, 2006.

    Article  PubMed  Google Scholar 

  12. Garcia, D., P. Pibarot, and L.-G. Durand. Analytical modeling of the instantaneous pressure gradient across the aortic valve. J. Biomech. 38(6):1303–1311, 2005.

    Article  PubMed  Google Scholar 

  13. Hatoum, H., J. Dollery, S. M. Lilly, J. A. Crestanello, and L. P. Dasi. Implantation depth and rotational orientation effect on valve-in-valve hemodynamics and sinus flow. Ann. Thorac. Surg. 106:70–78, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hatoum, H., F. Heim, and L. P. Dasi. Stented valve dynamic behavior induced by polyester fiber leaflet material in transcatheter aortic valve devices. J. Mech. Behav. Biomed. Mater. 86:232–239, 2018.

    Article  CAS  PubMed  Google Scholar 

  15. Hatoum, H., P. Maureira, and L. P. Dasi. A turbulence in vitro assessment of On-X and St Jude medical prostheses. J. Thorac. Cardiovasc. Surg. 2019. https://doi.org/10.1016/j.jtcvs.2019.02.046.

    Article  PubMed  Google Scholar 

  16. Hatoum, H., B. L. Moore, and L. P. Dasi. On the significance of systolic flow waveform on aortic valve energy loss. Ann. Biomed. Eng. 46:2102–2111, 2018.

    Article  PubMed  Google Scholar 

  17. Hatoum, H., A. Yousefi, S. Lilly, P. Maureira, J. Crestanello, and L. P. Dasi. An in-vitro evaluation of turbulence after transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 156:1837–1848, 2018.

    Article  PubMed  Google Scholar 

  18. Kheradvar, A., E. M. Groves, A. Falahatpisheh, M. K. Mofrad, S. Hamed Alavi, R. Tranquillo, L. P. Dasi, C. A. Simmons, K. Jane Grande-Allen, C. J. Goergen, F. Baaijens, S. H. Little, S. Canic, and B. Griffith. Emerging trends in heart valve engineering: Part IV. Computational modeling and experimental studies. Ann. Biomed. Eng. 43(10):2314–2333, 2015.

    Article  PubMed  Google Scholar 

  19. LaNieve, H. L. Entrance Effects in Non-Newtonian Pipe Flow. Knoxville: University of Tennessee, 1963.

    Google Scholar 

  20. Levine, R. A., and E. Schwammenthal. Stenosis is in the eye of the observer: impact of pressure recovery on assessing aortic valve area. J. Am. Coll. Cardiol. 41(3):443–445, 2003.

    Article  PubMed  Google Scholar 

  21. Otto, C. M. Valvular aortic stenosis: disease severity and timing of intervention. J. Am. Coll. Cardiol. 47(11):2141–2151, 2006.

    Article  PubMed  Google Scholar 

  22. Padala, M., E. L. Sarin, P. Willis, V. Babaliaros, P. Block, R. A. Guyton, and V. H. Thourani. An engineering review of transcatheter aortic valve technologies. Cardiovasc. Eng. Technol. 1(1):77–87, 2010.

    Article  Google Scholar 

  23. Pibarot, P., D. Garcia, and J. G. Dumesnil. Energy loss index in aortic stenosis: from fluid mechanics concept to clinical application. Am. Heart Assoc. 127:1101–1104, 2013.

    Google Scholar 

  24. Sotiropoulos, F., T. B. Le, and A. Gilmanov. Fluid mechanics of heart valves and their replacements. Ann. Rev. Fluid Mech. 48:259–283, 2016.

    Article  Google Scholar 

  25. Thaden, J. J., V. T. Nkomo, K. J. Lee, and J. K. Oh. Doppler imaging in aortic stenosis: the importance of the nonapical imaging windows to determine severity in a contemporary cohort. J. Am. Soc. Echocardiogr. 28(7):780–785, 2015.

    Article  PubMed  Google Scholar 

  26. VanAuker, M. D., M. Chandra, J. Shirani, and J. A. Strom. Jet eccentricity: a misleading source of agreement between Doppler/catheter pressure gradients in aortic stenosis. J. Am. Soc. Echocardiogr. 14(9):853–862, 2001.

    Article  CAS  PubMed  Google Scholar 

  27. White, F. M. Fluid Mechanics, McGraw-Hill Series in Mechanical Engineering. Boston: McGraw-Hill International Editions, 1998.

    Google Scholar 

  28. Young, D. F. Fluid-mechanics of arterial stenoses. J. Biomech. Eng. Trans. ASME 101(3):157–175, 1979.

    Article  Google Scholar 

Download references

Conflict of interest

Dr. Crestanello reports having grants from Medtronic, Boston Scientific and St. Jude in addition to being part of Medtronic advisory board. Dr. Dasi reports having patent applications filed on novel polymeric valves, vortex generators and superhydrophobic/omniphobic surfaces. No other conflicts were reported.

Funding

The research done was partly supported by National Institutes of Health (NIH) under Award Number R01HL119824 and the American Heart Association (AHA) under Award Number 19POST34380804.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Prasad Dasi.

Additional information

Associate Editor Dan Elson oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Non-dimensional Analysis

Appendix A: Non-dimensional Analysis

From non-dimensional analysis, we choose to select 6 different variables \(\left( {\Delta P, \rho , V, D, \nu , \frac{\text{d}}{{{\text{d}}t}}\left( {\frac{{\rho V^{2} }}{2}} \right)} \right)\) where \(\nu\) is the kinematic viscosity.

The π groups obtained can be summarized:

$$\pi_{1} = \frac{\Delta P}{{\rho V^{2} }}$$
(19)
$$\pi_{2} = \frac{1}{Re}$$
(20)
$$\pi_{3} = \frac{\text{d}}{{{\text{d}}t}}\left( {\frac{{V^{2} }}{2}} \right)\frac{D}{{V^{3} }} = \frac{D}{{V^{2} }}\frac{{{\text{d}}V}}{{{\text{d}}t}}$$
(21)

Stemming from Eq. (4), the relationship between the π groups can be written as follows:

$$\pi_{1} = f\left( {\pi_{2} } \right) + g\left( {\pi_{3} } \right)$$
(22)
$$\frac{\Delta P}{{\rho V^{2} }} = f\left( {\frac{1}{Re}} \right) + g\left( {\frac{D}{{V^{2} }}\frac{{{\text{d}}V}}{{{\text{d}}t}}} \right)$$
(23)
$$\Delta P = f\left( {\frac{{\rho V^{2} }}{Re}} \right) + g\left( {\frac{\mu Re}{V}\frac{{{\text{d}}V}}{{{\text{d}}t}}} \right)$$
(24)
$$\Delta P = f\left( {\frac{{\rho Q^{2} }}{{ReA^{2} }}} \right) + g\left( {\frac{\mu Re}{VA}\frac{{{\text{d}}Q}}{{{\text{d}}t}}} \right)$$
(25)

Equations (25) and (16) compare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatoum, H., Mo, XM., Crestanello, J.A. et al. Modeling of the Instantaneous Transvalvular Pressure Gradient in Aortic Stenosis. Ann Biomed Eng 47, 1748–1763 (2019). https://doi.org/10.1007/s10439-019-02275-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02275-4

Keywords

Navigation