Skip to main content
Log in

The Development of a Four-Electrode Bio-Impedance Sensor for Identification and Localization of Deep Pulmonary Nodules

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Identifying and localizing of deep pulmonary nodules are among the main challenges that thoracic surgeons face during operations, particularly in thoracoscopic procedures. To facilitate this, we have tried to introduce a non-invasive and safe method by measuring the lung electrical bio-impedance spectrum with a four-electrode array sensor. To study the feasibility of this method, since any change in the depth or diameter of the nodule in the lung tissue is not practical, we used the finite element modeling of the lung tissue and pulmonary nodule to allow changes in the depth and diameter of the nodule, as well as the distance in between the injection electrodes. Accordingly, a bio-impedance sensor was designed and fabricated. By measuring the electrical impedance spectrum of pulmonary tissues in four different specimens with a frequency band of 50 kHz to 5 MHz, 4 pulmonary nodules at four different depths were identified. The obtained bio-impedance spectrum from the lung surface showed that the magnitude and phase of electrical bio-impedance of the tumoral tissue at each frequency is smaller than that of the healthy tissue. In addition, the frequency characteristic varies in the Nyquist curves for tumoral and healthy lung tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aberg, P., I. Nicander, J. Hansson, P. Geladi, U. Holmgren, and S. Ollmar. Skin cancer identification using multifrequency electrical impedance-a potential screening tool. IEEE Trans. Biomed. Eng. 51:2097–2102, 2004.

    Article  PubMed  Google Scholar 

  2. Baghbani, R., M. H. Moradi, and M. B. Shadmehr. Identifying and localizing of the in-depth pulmonary nodules using electrical bio-impedance. J. Investig. Surg. 2017. https://doi.org/10.1080/08941939.2017.1394403.

    Article  Google Scholar 

  3. Chung, Y.-K., J. Reboud, K. C. Lee, H. M. Lim, P. Y. Lim, K. Y. Wang, K. C. Tang, H. Ji, and Y. Chen. An electrical biosensor for the detection of circulating tumor cells. Biosens. Bioelectron. 26:2520–2526, 2011.

    Article  PubMed  CAS  Google Scholar 

  4. Dai, Y., J. Du, Q. Yang, and J. Zhang. Noninvasive electrical impedance sensor for in vivo tissue discrimination at radio frequencies. Bioelectromagnetics 35:385–395, 2014.

    Article  PubMed  CAS  Google Scholar 

  5. Dai, Y., J. Du, Q. Yang, and J. Zhang. Development of a noninvasive electrical impedance probe for minimally invasive tumor localization. Physiol. Meas. 36:1785, 2015.

    Article  Google Scholar 

  6. Foster, K. R., and J. L. Schepps. Dielectric properties of tumor and normal tissues at radio through microwave frequencies. J. Microw. Power 16:107–119, 1981.

    Article  PubMed  CAS  Google Scholar 

  7. Gabriel, C., S. Gabriel, and E. Corthout. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 41:2231, 1996.

    Article  PubMed  CAS  Google Scholar 

  8. Gabriel, S., R. W. Lau, and C. Gabriel. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41:2251, 1996.

    Article  PubMed  CAS  Google Scholar 

  9. Gabriel, C., A. Peyman, and E. H. Grant. Electrical conductivity of tissue at frequencies below 1 MHz. Phys. Med. Biol. 54:4863, 2009.

    Article  PubMed  CAS  Google Scholar 

  10. Glickman, Y. A., O. Filo, M. David, A. Yayon, M. Topaz, B. Zamir, A. Ginzburg, D. Rozenman, and G. Kenan. Electrical impedance scanning: a new approach to skin cancer diagnosis. Skin Res. Technol. 9:262–268, 2003.

    Article  PubMed  Google Scholar 

  11. Gregory, W. D., J. J. Marx, C. W. Gregory, W. M. Mikkelson, J. A. Tjoe, and J. Shell. The Cole relaxation frequency as a parameter to identify cancer in breast tissue. Med. Phys. 39:4167–4174, 2012.

    Article  PubMed  CAS  Google Scholar 

  12. Grysiński, T., and Z. Moroń. Planar sensors for local conductivity measurements in biological objects—design, modelling, sensitivity maps. Sens. Actuators B Chem. 158:190–198, 2011.

    Article  CAS  Google Scholar 

  13. Han, A., L. Yang, and A. B. Frazier. Quantification of the heterogeneity in breast cancer cell lines using whole-cell impedance spectroscopy. Clin. Cancer Res. 13:139–143, 2007.

    Article  PubMed  Google Scholar 

  14. Harris, K., J. Puchalski, and D. Sterman. Recent advances in bronchoscopic treatment of peripheral lung cancers. Chest 151:674–685, 2017.

    Article  PubMed  Google Scholar 

  15. Hesabgar, S. M., A. Sadeghi-Naini, G. Czarnota, and A. Samani. Dielectric properties of the normal and malignant breast tissues in xenograft mice at low frequencies (100 Hz–1 MHz). Measurement 105:56–65, 2017.

    Article  Google Scholar 

  16. IEEE Standards Coordinating Committee. IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. IEEE 1999. https://doi.org/10.1109/IEEESTD.1999.89423.

    Article  Google Scholar 

  17. Jahnke, H.-G., A. Heimann, R. Azendorf, K. Mpoukouvalas, O. Kempski, A. A. Robitzki, and P. Charalampaki. Impedance spectroscopy—an outstanding method for label-free and real-time discrimination between brain and tumor tissue in vivo. Biosens. Bioelectron. 46:8–14, 2013.

    Article  PubMed  CAS  Google Scholar 

  18. Jangra, D., T. Powell, S. E. Kalloger, H. L. Guerra, J. Clifton, H. O. Coxson, R. J. Finley, and J. R. Mayo. CT-directed microcoil localization of small peripheral lung nodules: a feasibility study in pigs. J. Investig. Surg. 18:265–272, 2005.

    Article  Google Scholar 

  19. Jianxun, D., D. Jun, Y. Qing, and Z. Jianxun. Development of a noninvasive electrical impedance probe for minimally invasive tumor localization. Physiol. Meas. 36:1785, 2015.

    Article  PubMed  Google Scholar 

  20. Keating, J., and S. Singhal. Novel methods of intraoperative localization and margin assessment of pulmonary nodules. Semin. Thorac. Cardiovasc. Surg. 28:127–136, 2016.

    Article  PubMed  Google Scholar 

  21. Keshtkar, A., Z. Salehnia, M. H. Somi, and A. T. Eftekharsadat. Some early results related to electrical impedance of normal and abnormal gastric tissue. Phys. Medica 28:19–24, 2012.

    Article  CAS  Google Scholar 

  22. Khan, S., A. Mahara, E. S. Hyams, A. Schned, and R. Halter. Towards intraoperative surgical margin assessment and visualization using bioimpedance properties of the tissue, 2015.

  23. Li, Z., L. Chen, Y. Zhu, Q. Wei, W. Liu, D. Tian, and Y. Yu. Handheld electrical impedance myography probe for assessing carpal tunnel syndrome. Ann. Biomed. Eng. 45:1572–1580, 2017.

    Article  PubMed  Google Scholar 

  24. Li, Q.-L., H.-W. Guan, Q.-P. Zhang, L.-Z. Zhang, F.-P. Wang, and Y.-J. Liu. Optimal margin in nephron-sparing surgery for renal cell carcinoma 4 cm or less. Eur. Urol. 44:448–451, 2018.

    Article  Google Scholar 

  25. Luo, X. A bronchoscopic navigation system using bronchoscope center calibration for accurate registration of electromagnetic tracker and CT volume without markers. Med. Phys. 41:061913, 2014.

    Article  PubMed  Google Scholar 

  26. Matsumoto, S., T. Hirata, E. Ogawa, T. Fukuse, H. Ueda, T. Koyama, T. Nakamura, and H. Wada. Ultrasonographic evaluation of small nodules in the peripheral lung during video-assisted thoracic surgery (VATS). Eur. J. Cardio-Thoracic Surg. 26:469–473, 2004.

    Article  Google Scholar 

  27. Modjarrad, K., S. Ebnesajjad. Plastics design library. Handbook of polymer applications in medicine and medical devices, 2014. http://www.books24x7.com/marc.asp?bookid=58853.

  28. Nakashima, S., A. Watanabe, T. Obama, G. Yamada, H. Takahashi, and T. Higami. Need for preoperative computed tomography-guided localization in video-assisted thoracoscopic surgery pulmonary resections of metastatic pulmonary nodules. Ann. Thorac. Surg. 89:212–218, 2017.

    Article  Google Scholar 

  29. Nicander, I., L. Emtestam, P. Åberg, and S. Ollmar. Twelve years evolution of skin as seen by electrical impedance. J. Phys. Conf. Ser. 224:12092, 2010.

    Article  CAS  Google Scholar 

  30. Rabbani, K. S., and M. A. S. Karal. A new four-electrode focused impedance measurement (FIM) system for physiological study. Ann. Biomed. Eng. 36:1072–1077, 2008.

    Article  PubMed  CAS  Google Scholar 

  31. Ryan, J. H., H. Alex, D. P. Keith, S. Alan, and H. John. Genetic and least squares algorithms for estimating spectral EIS parameters of prostatic tissues. Physiol. Meas. 29:S111, 2008.

    Article  Google Scholar 

  32. Santambrogio, R., M. Montorsi, P. Bianchi, A. Mantovani, F. Ghelma, and M. Mezzetti. Intraoperative ultrasound during thoracoscopic procedures for solitary pulmonary nodules. Ann. Thorac. Surg. 68:218–222, 1999.

    Article  PubMed  CAS  Google Scholar 

  33. Shlomi, L., I. Antoni, E. R. Victor, R. Boris, and B. S. Stephen. Electrical impedance characterization of normal and cancerous human hepatic tissue. Physiol. Meas. 31:995, 2010.

    Article  Google Scholar 

  34. Siegel, R. L., K. D. Miller, and A. Jemal. Cancer statistics, 2017. CA. Cancer J. Clin. 67:7–30, 2017.

    Article  PubMed  Google Scholar 

  35. Smallwood, R. H., and A. Keshtkar. Electrical impedance spectroscopy and the diagnosis of bladder pathology. Physiol. Meas. 27:585, 2006.

    Article  PubMed  Google Scholar 

  36. Wait, J. R. Chapter I—Earth resistivity principles. In: Geo-electromagnetism. New York: Academic Press, 1982, pp. 1–67. https://doi.org/10.1016/B978-0-12-730880-7.50005-3.

  37. Wan, Y., A. Borsic, J. Heaney, J. Seigne, A. Schned, M. Baker, S. Wason, A. Hartov, and R. Halter. Transrectal electrical impedance tomography of the prostate: spatially coregistered pathological findings for prostate cancer detection. Med. Phys. 40:063102, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Weaver, H., and A. S. Coonar. Lung cancer: diagnosis, staging and treatment. Surgery 35:247–254, 2017.

    Google Scholar 

  39. Webster, D., S. T. Staelin, J. Z. Tsai, S. Tungjitkusolmun, D. M. Mahvi, and J. G. Webster. In vivo electrical conductivity of hepatic tumours. Physiol. Meas. 24:251, 2003.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hassan Moradi.

Additional information

Associate Editor Arash Kheradvar oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghbani, R., Moradi, M.H. & Shadmehr, M.B. The Development of a Four-Electrode Bio-Impedance Sensor for Identification and Localization of Deep Pulmonary Nodules. Ann Biomed Eng 46, 1079–1090 (2018). https://doi.org/10.1007/s10439-018-2032-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2032-8

Keywords

Navigation