Skip to main content
Log in

Nondestructive Techniques to Evaluate the Characteristics and Development of Engineered Cartilage

  • Nondestructive Characterization of Biomaterials for Tissue Engineering and Drug Delivery
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this review, methods for evaluating the properties of tissue engineered (TE) cartilage are described. Many of these have been developed for evaluating properties of native and osteoarthritic articular cartilage. However, with the increasing interest in engineering cartilage, specialized methods are needed for nondestructive evaluation of tissue while it is developing and after it is implanted. Such methods are needed, in part, due to the large inter- and intra-donor variability in the performance of the cellular component of the tissue, which remains a barrier to delivering reliable TE cartilage for implantation. Using conventional destructive tests, such variability makes it near-impossible to predict the timing and outcome of the tissue engineering process at the level of a specific piece of engineered tissue and also makes it difficult to assess the impact of changing tissue engineering regimens. While it is clear that the true test of engineered cartilage is its performance after it is implanted, correlation of pre and post implantation properties determined non-destructively in vitro and/or in vivo with performance should lead to predictive methods to improve quality-control and to minimize the chances of implanting inferior tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Afara, I., I. Prasadam, R. Crawford, Y. Xiao, and A. Oloyede. Non-destructive evaluation of articular cartilage defects using near-infrared (NIR) spectroscopy in osteoarthritic rat models and its direct relation to Mankin score. Osteoarthritis Cartilage 20:1367–1373, 2012.

    Article  CAS  PubMed  Google Scholar 

  2. Afara, I. O., I. Prasadam, H. Moody, R. Crawford, Y. Xiao, and A. Oloyede. Near infrared spectroscopy for rapid determination of Mankin score components: a potential tool for quantitative characterization of articular cartilage at surgery. Arthroscopy 30:1146–1155, 2014.

    Article  PubMed  Google Scholar 

  3. Andersson G., J. Bouchard, K. Bozic, R. Campbell, M. Cisternas, A. Correa, F. Cosman, J. Cragan, K. D’Andrea, N. Doernberg, J. Dormans, A. Elderkin, Z. Fershteyn, A. Foreman, S. Gitelis, S. Gnatz, R. Haralson, C. Helmick, M. Hochberg, S. Hu, J. Katz, T. King, R. Kirk, S. Kurtz, N. Lane, A. Looker, J. McGowan, A. Miller, R. Novich, R. Olney, P. Panopalis, D. Pasta, A. Pollak, J. Puzas, B. Richards, J. Sestito, C. Siffel, P. Sponseller, E. St. Clair, A. Stuart, K. Templeton, G. Thompson, L. Tosi, A. Tosteson, W. Ward, S. Watkins-Castillo, S. Weinstein, M. Wieting, J. Wright, and E. Yelin. Arthritis and related conditions. In: The Burden of Musculoskeletal Diseases in the United States. Rosemont, IL: American Academy of Orthopaedic Surgeons, 2008, pp. 75–102.

  4. Appel, A. A., M. A. Anastasio, J. C. Larson, and E. M. Brey. Imaging challenges in biomaterials and tissue engineering. Biomaterials 34:6615–6630, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Athanasiou, K. A., M. P. Rosenwasser, J. A. Buckwalter, T. I. Malinin, and V. C. Mow. Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J. Orthop. Res. 9:330–340, 1991.

    Article  CAS  PubMed  Google Scholar 

  6. Aula, A. S., J. Toyras, V. Tiitu, and J. S. Jurvelin. Simultaneous ultrasound measurement of articular cartilage and subchondral bone. Osteoarthritis Cartilage 18:1570–1576, 2010.

    Article  CAS  PubMed  Google Scholar 

  7. Balogh, L., A. Polyak, D. Mathe, R. Kiraly, J. Thuroczy, M. Terez, G. Janoki, Y. Ting, L. R. Bucci, and A. G. Schauss. Absorption, uptake and tissue affinity of high-molecular-weight hyaluronan after oral administration in rats and dogs. J. Agric. Food Chem. 56:10582–10593, 2008.

    Article  CAS  PubMed  Google Scholar 

  8. Bashir, A., M. L. Gray, R. D. Boutin, and D. Burstein. Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology 205:551–558, 1997.

    Article  CAS  PubMed  Google Scholar 

  9. Bashir, A., M. L. Gray, J. Hartke, and D. Burstein. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn. Reson. Med. 41:857–865, 1999.

    Article  CAS  PubMed  Google Scholar 

  10. Baykal, D., O. Irrechukwu, P. C. Lin, K. Fritton, R. G. Spencer, and N. Pleshko. Nondestructive assessment of engineered cartilage constructs using near-infrared spectroscopy. Appl. Spectrosc. 64:1160–1166, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Beattie, B. J., A. D. Klose, C. H. Le, V. A. Longo, K. Dobrenkov, J. Vider, J. A. Koutcher, and R. G. Blasberg. Registration of planar bioluminescence to magnetic resonance and X-ray computed tomography images as a platform for the development of bioluminescence tomography reconstruction algorithms. J. Biomed. Opt. 14:024045, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bi, X., G. Li, S. B. Doty, and N. P. Camacho. A novel method for determination of collagen orientation in cartilage by Fourier transform infrared imaging spectroscopy (FT-IRIS). Osteoarthritis Cartilage 13:1050–1058, 2005.

    Article  CAS  PubMed  Google Scholar 

  13. Bi, X., X. Yang, M. P. Bostrom, D. Bartusik, S. Ramaswamy, K. W. Fishbein, R. G. Spencer, and N. P. Camacho. Fourier transform infrared imaging and MR microscopy studies detect compositional and structural changes in cartilage in a rabbit model of osteoarthritis. Anal. Bioanal. Chem. 387:1601–1612, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bi, X., X. Yang, M. P. Bostrom, and N. P. Camacho. Fourier transform infrared imaging spectroscopy investigations in the pathogenesis and repair of cartilage. Biochim. Biophys. Acta 1758:934–941, 2006.

    Article  CAS  PubMed  Google Scholar 

  15. Boskey, A., and N. P. Camacho. FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28:2465–2478, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boyette, L. B., O. A. Creasey, L. Guzik, T. Lozito, and R. S. Tuan. Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning. Stem Cells Transl. Med. 3:241–254, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bridal, S. L., P. Fornes, P. Bruneval, and G. Berger. Correlation of ultrasonic attenuation (30–50 MHz and constituents of atherosclerotic plaque. Ultrasound Med. Biol. 23:691–703, 1997.

    Article  CAS  PubMed  Google Scholar 

  18. Brommer, H., M. S. Laasanen, P. A. Brama, P. R. van Weeren, H. J. Helminen, and J. S. Jurvelin. In situ and ex vivo evaluation of an arthroscopic indentation instrument to estimate the health status of articular cartilage in the equine metacarpophalangeal joint. Vet. Surg. 35:259–266, 2006.

    Article  PubMed  Google Scholar 

  19. Buckley, M. R., A. J. Bergou, J. Fouchard, L. J. Bonassar, and I. Cohen. High-resolution spatial mapping of shear properties in cartilage. J. Biomech. 43:796–800, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Buckley, M. R., J. P. Gleghorn, L. J. Bonassar, and I. Cohen. Mapping the depth dependence of shear properties in articular cartilage. J. Biomech. 41:2430–2437, 2008.

    Article  PubMed  Google Scholar 

  21. Burke, D. P., H. Khayyeri, and D. J. Kelly. Substrate stiffness and oxygen availability as regulators of mesenchymal stem cell differentiation within a mechanically loaded bone chamber. Biomech. Model. Mechanobiol. 14:93–105, 2015.

    Article  PubMed  Google Scholar 

  22. Butler, D., J. Lewis, C. Frank, A. Banes, A. I. Caplan, P. de Deyne, M.-A. Dowling, B. Fleming, J. Glowacki, R. Guldberg, B. Johnstone, D. Kaplan, M. Levenston, J. Lotz, E. Lu, N. Lumelsky, J. J. Mao, R. Mauck, C. McDevitt, L. Mejia, M. Murray, A. Ratcliffe, K. Spindler, S. Tashman, C. Wagner, E. Weisberg, C. Williams, and R. Zhang. Evaluation criteria for musculoskeletal and craniofacial tissue engineering constructs: a conference report. Tissue Eng. Part A 14:2089–2104, 2008.

    Article  Google Scholar 

  23. Camacho, N. P., P. West, P. A. Torzilli, and R. Mendelsohn. FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage. Biopolymers 62:1–8, 2001.

    Article  CAS  PubMed  Google Scholar 

  24. Campagnola, P. J., and L. M. Loew. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat. Biotechnol. 21:1356–1360, 2003.

    Article  CAS  PubMed  Google Scholar 

  25. Campagnola, P. J., A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys. J . 82:493–508, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carrino, D. A., P. Onnerfjord, J. D. Sandy, G. Cs-Szabo, P. G. Scott, J. M. Sorrell, D. Heinegard, and A. I. Caplan. Age-related changes in the proteoglycans of human skin. Specific cleavage of decorin to yield a major catabolic fragment in adult skin. J. Biol. Chem. 278:17566–17572, 2003.

    Article  CAS  PubMed  Google Scholar 

  27. Caterson, B. Fell-Muir Lecture: chondroitin sulphate glycosaminoglycans: fun for some and confusion for others. Int. J. Exp. Pathol. 93:1–10, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Caterson, B., F. Mahmoodian, J. M. Sorrell, T. E. Hardingham, M. T. Bayliss, S. L. Carney, A. Ratcliffe, and H. Muir. Modulation of native chondroitin sulphate structure in tissue development and in disease. J. Cell Sci. 97(Pt 3):411–417, 1990.

    CAS  PubMed  Google Scholar 

  29. Cernohorsky, P., A. C. Kok, D. M. Bruin, M. J. Brandt, D. J. Faber, G. J. Tuijthof, G. M. Kerkhoffs, S. D. Strackee, and T. G. van Leeuwen. Comparison of optical coherence tomography and histopathology in quantitative assessment of goat talus articular cartilage. Acta Orthop. 86:257–263, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cespedes, I., J. Ophir, H. Ponnekanti, and N. Maklad. Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo. Ultrason. Imaging 15:73–88, 1993.

    Article  CAS  PubMed  Google Scholar 

  31. Chase, L. G., S. Yang, V. Zachar, Z. Yang, U. Lakshmipathy, J. Bradford, S. E. Boucher, and M. C. Vemuri. Development and characterization of a clinically compliant xeno-free culture medium in good manufacturing practice for human multipotent mesenchymal stem cells. Stem Cells Transl. Med. 1:750–758, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cherin, E., A. Saied, B. Pellaumail, D. Loeuille, P. Laugier, P. Gillet, P. Netter, and G. Berger. Assessment of rat articular cartilage maturation using 50-MHz quantitative ultrasonography. Osteoarthritis Cartilage 9:178–186, 2001.

    Article  CAS  PubMed  Google Scholar 

  33. Cho, J. Y., T. D. Grant, G. P. Lunstrum, and W. A. Horton. Col2-GFP reporter mouse—a new tool to study skeletal development. Am. J. Med. Genet. 106:251–253, 2001.

    Article  CAS  PubMed  Google Scholar 

  34. Chu, C. R., D. Lin, J. L. Geisler, C. T. Chu, F. H. Fu, and Y. Pan. Arthroscopic microscopy of articular cartilage using optical coherence tomography. Am. J. Sports Med. 32:699–709, 2004.

    Article  PubMed  Google Scholar 

  35. Chung, C. Y., J. Heebner, H. Baskaran, J. F. Welter, and J. M. Mansour. Ultrasound elastography for estimation of regional strain of multilayered hydrogels and tissue-engineered cartilage. Ann. Biomed. Eng. 43:2991–3003, 2015.

    Article  PubMed  Google Scholar 

  36. Cockman, M. D., C. A. Blanton, P. A. Chmielewski, L. Dong, T. E. Dufresne, E. B. Hookfin, M. J. Karb, S. Liu, and K. R. Wehmeyer. Quantitative imaging of proteoglycan in cartilage using a gadolinium probe and microCT. Osteoarthritis Cartilage 14:210–214, 2006.

    Article  CAS  PubMed  Google Scholar 

  37. Contag, C. H., D. Jenkins, P. R. Contag, and R. S. Negrin. Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2:41–52, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. David-Vaudey, E., A. Burghardt, K. Keshari, A. Brouchet, M. Ries, and S. Majumdar. Fourier Transform Infrared Imaging of focal lesions in human osteoarthritic cartilage. Eur. Cell Mater. 10:51–60, 2005; (discussion 60).

    CAS  PubMed  Google Scholar 

  39. Drakonaki, E. E., G. M. Allen, and D. J. Wilson. Ultrasound elastography for musculoskeletal applications. Br. J. Radiol. 85:1435–1445, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. DuRaine, G. D., B. Arzi, J. K. Lee, C. A. Lee, D. J. Responte, J. C. Hu, and K. A. Athanasiou. Biomechanical evaluation of suture-holding properties of native and tissue-engineered articular cartilage. Biomech. Model. Mechanobiol. 14:73–81, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Farrell, M. J., J. I. Shin, L. J. Smith, and R. L. Mauck. Functional consequences of glucose and oxygen deprivation on engineered mesenchymal stem cell-based cartilage constructs. Osteoarthritis Cartilage 23:134–142, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Forster, H., and J. Fisher. The influence of continuous sliding and subsequent surface wear on the friction of articular cartilage. Proc. Inst. Mech. Eng. [H] 213:329–345, 1999.

    Article  CAS  Google Scholar 

  43. Fortin, M., M. D. Buschmann, M. J. Bertrand, F. S. Foster, and J. Ophir. Dynamic measurement of internal solid displacement in articular cartilage using ultrasound backscatter. J. Biomech. 36:443–447, 2003.

    Article  PubMed  Google Scholar 

  44. Fritts, Jr., H. W., D. W. Richards, and A. Cournand. Oxygen consumption of tissues in the human lung. Science 133:1070–1072, 1961.

    Article  CAS  PubMed  Google Scholar 

  45. Gambhir, S., and S. Yaghoubi. Molecular Imaging with Reporter Genes. New York: Cambridge University Press, 2010.

    Book  Google Scholar 

  46. Gavenis, K., R. Schmitt, K. Eder, T. Mumme, S. Andereya, U. Schneider, and R. Muller-Rath. Optical coherence tomography (OCT) to evaluate cartilage tissue engineering. Z. Orthop. Unfall. 146:788–792, 2008.

    CAS  PubMed  Google Scholar 

  47. Gelse, K., A. Olk, S. Eichhorn, B. Swoboda, M. Schoene, and K. Raum. Quantitative ultrasound biomicroscopy for the analysis of healthy and repair cartilage tissue. Eur. Cell Mater. 19:58–71, 2010.

    CAS  PubMed  Google Scholar 

  48. Gillis, A., A. Bashir, B. McKeon, A. Scheller, M. L. Gray, and D. Burstein. Magnetic resonance imaging of relative glycosaminoglycan distribution in patients with autologous chondrocyte transplants. Invest. Radiol. 36:743–748, 2001.

    Article  CAS  PubMed  Google Scholar 

  49. Gillooly, J. F., J. H. Brown, G. B. West, V. M. Savage, and E. L. Charnov. Effects of size and temperature on metabolic rate. Science 293:2248–2251, 2001.

    Article  CAS  PubMed  Google Scholar 

  50. Ginat, D. T., G. Hung, T. R. Gardner, and E. E. Konofagou. High-resolution ultrasound elastography of articular cartilage in vitro. Conf. Proc. IEEE Eng. Med. Biol. Soc. Suppl:6644–6647, 2006.

    PubMed  Google Scholar 

  51. Goldring, M. B., K. Tsuchimochi, and K. Ijiri. The control of chondrogenesis. J. Cell. Biochem. 97:33–44, 2006.

    Article  CAS  PubMed  Google Scholar 

  52. Griebel, A. J., M. Khoshgoftar, T. Novak, C. C. van Donkelaar, and C. P. Neu. Direct noninvasive measurement and numerical modeling of depth-dependent strains in layered agarose constructs. J. Biomech. 47:2149–2156, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hagiwara, Y., T. Izumi, Y. Yabe, M. Sato, K. Sonofuchi, K. Kanazawa, M. Koide, Y. Saijo, and E. Itoi. Simultaneous evaluation of articular cartilage and subchondral bone from immobilized knee in rats by photoacoustic imaging system. J. Orthop. Sci. 20:397–402, 2015.

    Article  PubMed  Google Scholar 

  54. Haralik, R. M., K. Shanmugan, and I. Dinstein. Textural features for imagine classification. IEEE Trans. Syst. Manag. Cybern. 3:610–621, 1973.

    Article  Google Scholar 

  55. Hardy, P. A., A. C. Ridler, C. B. Chiarot, D. B. Plewes, and R. M. Henkelman. Imaging articular cartilage under compression–cartilage elastography. Magn. Reson. Med. 53:1065–1073, 2005.

    Article  PubMed  Google Scholar 

  56. Hattori, K., K. Mori, T. Habata, Y. Takakura, and K. Ikeuchi. Measurement of the mechanical condition of articular cartilage with an ultrasonic probe: quantitative evaluation using wavelet transformation. Clin. Biomech. 18:553–557, 2003.

    Article  Google Scholar 

  57. Hattori, K., Y. Takakura, Y. Morita, M. Takenaka, K. Uematsu, and K. Ikeuchi. Can ultrasound predict histological findings in regenerated cartilage? Rheumatology (Oxford) 43:302–305, 2004.

    Article  CAS  Google Scholar 

  58. Hattori, K., Y. Takakura, H. Ohgushi, T. Habata, K. Uematsu, and K. Ikeuchi. Novel ultrasonic evaluation of tissue-engineered cartilage for large osteochondral defects—non-invasive judgment of tissue-engineered cartilage. J. Orthop. Res. 23:1179–1183, 2005.

    Article  PubMed  Google Scholar 

  59. Hattori, K., Y. Takakura, H. Ohgushi, T. Habata, K. Uematsu, J. Yamauchi, K. Yamashita, T. Fukuchi, M. Sato, and K. Ikeuchi. Quantitative ultrasound can assess the regeneration process of tissue-engineered cartilage using a complex between adherent bone marrow cells and a three-dimensional scaffold. Arthritis Res. Ther. 7:R552–R559, 2005.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Herrmann, J. M., C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski. High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography. J. Rheumatol. 26:627–635, 1999.

    CAS  PubMed  Google Scholar 

  61. Huisman, A., L. S. Ploeger, H. F. Dullens, T. N. Jonges, J. A. Belien, G. A. Meijer, N. Poulin, W. E. Grizzle, and P. J. van Diest. Discrimination between benign and malignant prostate tissue using chromatin texture analysis in 3-D by confocal laser scanning microscopy. Prostate 67:248–254, 2007.

    Article  PubMed  Google Scholar 

  62. Ishihara, M., M. Sato, S. Sato, T. Kikuchi, K. Fujikawa, and M. Kikuchi. Viscoelastic characterization of biological tissue by photoacoustic measurement. Jpn. J. Appl. Phys. 42:556–558, 2003.

    Article  CAS  Google Scholar 

  63. Ishihara, M., M. Sato, S. Sato, T. Kikuchi, J. Mochida, and M. Kikuchi. Usefulness of photoacoustic measurements for evaluation of biomechanical properties of tissue-engineered cartilage. Tissue Eng. 11:1234–1243, 2005.

    Article  PubMed  Google Scholar 

  64. Johnstone, B., T. M. Hering, A. I. Caplan, V. M. Goldberg, and J. U. Yoo. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 238:265–272, 1998.

    Article  CAS  PubMed  Google Scholar 

  65. Kafienah, W., F. L. Cheung, T. Sims, I. Martin, S. Miot, C. Von Ruhland, P. J. Roughley, and A. P. Hollander. Lumican inhibits collagen deposition in tissue engineered cartilage. Matrix Biol. 27:526–534, 2008.

    Article  CAS  PubMed  Google Scholar 

  66. Kanai, Y., and P. Koopman. Structural and functional characterization of the mouse Sox9 promoter: implications for campomelic dysplasia. Hum. Mol. Genet. 8:691–696, 1999.

    Article  CAS  PubMed  Google Scholar 

  67. Kato, S., H. Yamada, N. Terada, K. Masuda, M. E. Lenz, M. Morita, Y. Yoshihara, and O. Henmi. Joint biomarkers in idiopathic femoral head osteonecrosis: comparison with hip osteoarthritis. J. Rheumatol. 32:1518–1523, 2005.

    PubMed  Google Scholar 

  68. Kim, M., X. Bi, W. E. Horton, R. G. Spencer, and N. P. Camacho. Fourier transform infrared imaging spectroscopic analysis of tissue engineered cartilage: histologic and biochemical correlations. J. Biomed. Opt. 10:031105, 2005.

    Article  PubMed  CAS  Google Scholar 

  69. Kiviranta, P., J. Toyras, M. T. Nieminen, M. S. Laasanen, S. Saarakkala, H. J. Nieminen, M. J. Nissi, and J. S. Jurvelin. Comparison of novel clinically applicable methodology for sensitive diagnostics of cartilage degeneration. Eur. Cell Mater. 13:46–55, 2007; (discussion 55).

    CAS  PubMed  Google Scholar 

  70. Knauper, V., B. Smith, C. Lopez-Otin, and G. Murphy. Activation of progelatinase B (proMMP-9) by active collagenase-3 (MMP-13). Eur. J. Biochem. 248:369–373, 1997.

    Article  CAS  PubMed  Google Scholar 

  71. Knudson, C., and W. Knudson. Cartilage proteoglycans. Semin. Cell Dev. Biol. 12:69–78, 2001.

    Article  CAS  PubMed  Google Scholar 

  72. Kotecha, M., D. Klatt, and R. L. Magin. Monitoring cartilage tissue engineering using magnetic resonance spectroscopy, imaging, and elastography. Tissue Eng. Part B Rev. 19:470–484, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kundu, K., S. F. Knight, N. Willett, S. Lee, W. R. Taylor, and N. Murthy. Hydrocyanines: a class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, and in vivo. Angew. Chem. Int. Ed. Engl. 48:299–303, 2009.

    Article  CAS  PubMed  Google Scholar 

  74. Kurtz, S., K. Ong, E. Lau, F. Mowat, and M. Halpern. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Joint Surg. 89:780–785, 2007.

    Article  PubMed  Google Scholar 

  75. Kurz, B., A. K. Lemke, J. Fay, T. Pufe, A. J. Grodzinsky, and M. Schunke. Pathomechanisms of cartilage destruction by mechanical injury. Ann. Anat. 187:473–485, 2005.

    Article  CAS  PubMed  Google Scholar 

  76. Laasanen, M. S., J. Toyras, A. I. Vasara, M. M. Hyttinen, S. Saarakkala, J. Hirvonen, J. S. Jurvelin, and I. Kiviranta. Mechano-acoustic diagnosis of cartilage degeneration and repair. J. Bone Joint Surg. Am. 85A:78–84, 2003.

    Google Scholar 

  77. Laasanen, M. S., J. Toyras, A. Vasara, S. Saarakkala, M. M. Hyttinen, I. Kiviranta, and J. S. Jurvelin. Quantitative ultrasound imaging of spontaneous repair of porcine cartilage. Osteoarthritis Cartilage 14:258–263, 2006.

    Article  CAS  PubMed  Google Scholar 

  78. Lareu, R. R., I. Arsianti, H. K. Subramhanya, P. Yanxian, and M. Raghunath. In vitro enhancement of collagen matrix formation and crosslinking for applications in tissue engineering: a preliminary study. Tissue Eng. 13:385–391, 2007.

    Article  CAS  PubMed  Google Scholar 

  79. Lareu, R. R., K. H. Subramhanya, Y. Peng, P. Benny, C. Chen, Z. Wang, R. Rajagopalan, and M. Raghunath. Collagen matrix deposition is dramatically enhanced in vitro when crowded with charged macromolecules: the biological relevance of the excluded volume effect. FEBS Lett. 581:2709–2714, 2007.

    Article  CAS  PubMed  Google Scholar 

  80. Laurent, D., J. Wasvary, J. Y. Yin, M. Rudin, T. C. Pellas, and E. O’Byrne. Quantitative and qualitative assessment of articular cartilage in the goat knee with magnetization transfer imaging. Magn. Reson. Imaging 19:1279–1286, 2001.

    Article  CAS  PubMed  Google Scholar 

  81. Lee, Z., J. Dennis, E. Alsberg, M. D. Krebs, J. Welter, and A. Caplan. Imaging stem cell differentiation for cell-based tissue repair. Methods Enzymol. 506:247–263, 2012.

    Article  CAS  PubMed  Google Scholar 

  82. Lee, H. Y., P. W. Kopesky, A. Plaas, J. Sandy, J. Kisiday, D. Frisbie, A. J. Grodzinsky, and C. Ortiz. Adult bone marrow stromal cell-based tissue-engineered aggrecan exhibits ultrastructure and nanomechanical properties superior to native cartilage. Osteoarthritis Cartilage 18:1477–1486, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Li, L. P., and W. Herzog. Arthroscopic evaluation of cartilage degeneration using indentation testing—influence of indenter geometry. Clin. Biomech. (Bristol, Avon) 21:420–426, 2006.

    Article  CAS  Google Scholar 

  84. Liukkonen, J., P. Lehenkari, J. Hirvasniemi, A. Joukainen, T. Viren, S. Saarakkala, M. T. Nieminen, J. S. Jurvelin, and J. Toyras. Ultrasound arthroscopy of human knee cartilage and subchondral bone in vivo. Ultrasound Med. Biol. 40:2039–2047, 2014.

    Article  PubMed  Google Scholar 

  85. Lopez, O., K. K. Amrami, A. Manduca, and R. L. Ehman. Characterization of the dynamic shear properties of hyaline cartilage using high-frequency dynamic MR elastography. Magn. Reson. Med. 59:356–364, 2008.

    Article  PubMed  Google Scholar 

  86. Lopez, O., K. K. Amrami, A. Manduca, P. J. Rossman, and R. L. Ehman. Developments in dynamic MR elastography for in vitro biomechanical assessment of hyaline cartilage under high-frequency cyclical shear. J. Magn. Reson. Imaging 25:310–320, 2007.

    Article  PubMed  Google Scholar 

  87. Lotjonen, P., P. Julkunen, J. Toyras, M. J. Lammi, J. S. Jurvelin, and H. J. Nieminen. Strain-dependent modulation of ultrasound speed in articular cartilage under dynamic compression. Ultrasound Med. Biol. 35:1177–1184, 2009.

    Article  PubMed  Google Scholar 

  88. Love, Z., F. Wang, J. Dennis, A. Awadallah, N. Salem, Y. Lin, A. Weisenberger, S. Majewski, S. Gerson, and Z. Lee. Imaging of mesenchymal stem cell transplant by bioluminescence and PET. J. Nucl. Med. 48:2011–2020, 2007.

    Article  PubMed  Google Scholar 

  89. Lyyra, T., J. Jurvelin, P. Pitkänen, U. Väätäinen, and I. Kiviranta. Indentation instrument for the measurement of cartilage stiffness under arthroscopic control. Med. Eng. Phys. 17:395–399, 1995.

    Article  CAS  PubMed  Google Scholar 

  90. Ma, P. X., and R. Langer. Morphology and mechanical function of long-term in vitro engineered cartilage. J. Biomed. Mater. Res. 44:217–221, 1999.

    Article  CAS  PubMed  Google Scholar 

  91. Ma, T., X. Qian, C. T. Chiu, M. Yu, H. Jung, Y. S. Tung, K. K. Shung, and Q. Zhou. High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization. Quant. Imaging Med. Surg. 5:108–117, 2015.

    PubMed  PubMed Central  Google Scholar 

  92. Mackay, A. M., S. C. Beck, J. M. Murphy, F. P. Barry, C. O. Chichester, and M. F. Pittenger. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 4:415–428, 1998.

    Article  CAS  PubMed  Google Scholar 

  93. Mak, A. F., W. M. Lai, and V. C. Mow. Biphasic indentation of articular cartilage–I. Theoretical analysis. J. Biomech. 20:703–714, 1987.

    Article  CAS  PubMed  Google Scholar 

  94. Mansour, J. M., D. W. Gu, C. Y. Chung, J. Heebner, J. Althans, S. Abdalian, M. D. Schluchter, Y. Liu, and J. F. Welter. Towards the feasibility of using ultrasound to determine mechanical properties of tissues in a bioreactor. Ann. Biomed. Eng. 42:2190–2202, 2014.

    Article  PubMed  Google Scholar 

  95. Mansour, J. M., and J. F. Welter. Multimodal evaluation of tissue-engineered cartilage. J. Med. Biol. Eng. 33:1–16, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Martin, I., B. Obradovic, S. Treppo, A. J. Grodzinsky, R. Langer, L. E. Freed, and G. Vunjak-Novakovic. Modulation of the mechanical properties of tissue engineered cartilage. Biorheology 37:141–147, 2000.

    CAS  PubMed  Google Scholar 

  97. Martinez-Sanchez, A., K. A. Dudek, and C. L. Murphy. Regulation of human chondrocyte function through direct inhibition of cartilage master regulator SOX9 by microRNA-145 (miRNA-145). J. Biol. Chem. 287:916–924, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Matcher, S. J. Practical aspects of OCT imaging in tissue engineering. Methods Mol. Biol. 695:261–280, 2011.

    Article  CAS  PubMed  Google Scholar 

  99. Matcher, S. J. What can biophotonics tell us about the 3D microstructure of articular cartilage? Quant. Imaging Med. Surg. 5:143–158, 2015.

    PubMed  PubMed Central  Google Scholar 

  100. Mauck, R. L., M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, and G. A. Ateshian. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122:252–260, 2000.

    Article  CAS  PubMed  Google Scholar 

  101. McCredie, A. J., E. Stride, and N. Saffari. Ultrasound elastography to determine the layered mechanical properties of articular cartilage and the importance of such structural characteristics under load. Conf. Proc. IEEE Eng. Med. Biol. Soc. 4262–4265:2009, 2009.

    Google Scholar 

  102. McLauchlan, G. J., and D. L. Gardner. Sacral and iliac articular cartilage thickness and cellularity: relationship to subchondral bone end-plate thickness and cancellous bone density. Rheumatology 41:375–380, 2002.

    Article  CAS  PubMed  Google Scholar 

  103. McNary, S. M., K. A. Athanasiou, and A. H. Reddi. Engineering lubrication in articular cartilage. Tissue Eng. Part B Rev. 18:88–100, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Melrose, J., M. D. Isaacs, S. M. Smith, C. E. Hughes, C. B. Little, B. Caterson, and A. J. Hayes. Chondroitin sulphate and heparan sulphate sulphation motifs and their proteoglycans are involved in articular cartilage formation during human foetal knee joint development. Histochem. Cell Biol. 138:461–475, 2012.

    Article  CAS  PubMed  Google Scholar 

  105. Mengshol, J. A., M. P. Vincenti, and C. E. Brinckerhoff. IL-1 induces collagenase-3 (MMP-13) promoter activity in stably transfected chondrocytic cells: requirement for Runx-2 and activation by p38 MAPK and JNK pathways. Nucleic Acids Res. 29:4361–4372, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mow, V. C., S. C. Kuei, W. M. Lai, and C. G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J. Biomech. Eng. 102:73–84, 1980.

    Article  CAS  PubMed  Google Scholar 

  107. Mow, V. C., A. Ratcliffe, M. P. Rosenwasser, and J. A. Buckwalter. Experimental studies on repair of large osteochondral defects at a high weight bearing area of the knee joint: a tissue engineering study. J. Biomech. Eng. 113:198–207, 1991.

    Article  CAS  PubMed  Google Scholar 

  108. Muller, J., K. Benz, M. Ahlers, C. Gaissmaier, and J. Mollenhauer. Hypoxic conditions during expansion culture prime human mesenchymal stromal precursor cells for chondrogenic differentiation in three-dimensional cultures. Cell Transplant. 20:1589–1602, 2011.

    Article  PubMed  Google Scholar 

  109. Murata, K., H. Yoshitomi, S. Tanida, M. Ishikawa, K. Nishitani, H. Ito, and T. Nakamura. Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis Res. Ther. 12:R86, 2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Na, K., S. Kim, B. K. Sun, D. G. Woo, H. N. Yang, H. M. Chung, and K. H. Park. Bioimaging of dexamethasone and TGF beta-1 and its biological activities of chondrogenic differentiation in hydrogel constructs. J. Biomed. Mater. Res. Part A 87:283–289, 2008.

    Article  CAS  Google Scholar 

  111. Nakano, T., and J. S. Sim. A study of the chemical composition of the proximal tibial articular cartilage and growth plate of broiler chickens. Poult. Sci. 74:538–550, 1995.

    Article  CAS  PubMed  Google Scholar 

  112. Nebelung, S., N. Brill, U. Marx, V. Quack, M. Tingart, R. Schmitt, B. Rath, and H. Jahr. Three-dimensional imaging and analysis of human cartilage degeneration using Optical Coherence Tomography. J. Orthop. Res. 33:651–659, 2015.

    Article  PubMed  Google Scholar 

  113. Neu, C. P., H. F. Arastu, S. Curtiss, and A. H. Reddi. Characterization of engineered tissue construct mechanical function by magnetic resonance imaging. J. Tissue Eng. Regen. Med. 3:477–485, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Neu, C. P., M. L. Hull, J. H. Walton, and M. H. Buonocore. MRI-based technique for determining nonuniform deformations throughout the volume of articular cartilage explants. Magn. Reson. Med. 53:321–328, 2005.

    Article  CAS  PubMed  Google Scholar 

  115. Neu, C. P., and J. H. Walton. Displacement encoding for the measurement of cartilage deformation. Magn. Reson. Med. 59:149–155, 2008.

    Article  PubMed  Google Scholar 

  116. Nieminen, H. J., S. Saarakkala, M. S. Laasanen, J. Hirvonen, J. S. Jurvelin, and J. Töyräs. Ultrasound attenuation in normal and spontaneously degenerated articular cartilage. Ultrasound Med. Biol. 30:493–500, 2004.

    Article  PubMed  Google Scholar 

  117. Nieminen, H. J., T. Ylitalo, S. Karhula, J. P. Suuronen, S. Kauppinen, R. Serimaa, E. Haeggstrom, K. P. Pritzker, M. Valkealahti, P. Lehenkari, M. Finnila, and S. Saarakkala. Determining collagen distribution in articular cartilage using contrast-enhanced micro-computed tomography. Osteoarthritis Cartilage 23:1613–1621, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nieminen, H. J., Y. Zheng, S. Saarakkala, Q. Wang, J. Toyras, Y. Huang, and J. Jurvelin. Quantitative assessment of articular cartilage using high-frequency ultrasound: research findings and diagnostic prospects. Crit. Rev. Biomed. Eng. 37:461–494, 2009.

    Article  PubMed  Google Scholar 

  119. Niu, H. J., Q. Wang, Y. X. Wang, D. Y. Li, Y. B. Fan, and W. F. Chen. Ultrasonic reflection coefficient and surface roughness index of OA articular cartilage: relation to pathological assessment. BMC Musculoskelet. Disord. 13:34, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Obradovic, B., R. L. Carrier, G. Vunjak-Novakovic, and L. E. Freed. Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol. Bioeng. 63:197–205, 1999.

    Article  CAS  PubMed  Google Scholar 

  121. Ollier, M., J. C. Maurizis, C. Nicolas, J. Bonafous, M. de Latour, A. Veyre, and J. C. Madelmont. Joint scintigraphy in rabbits with 99mtc-N-[3-(triethylammonio)propyl]-15ane-N5, a new radiodiagnostic agent for articular cartilage imaging. J. Nucl. Med. 42:141–145, 2001.

    CAS  PubMed  Google Scholar 

  122. Ophir, J., S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese. Elastography: imaging the elastic properties of soft tissues with ultrasound. J. Med. Ultrason. 29:155–171, 2002.

    Article  Google Scholar 

  123. Palmer, A. W., R. E. Guldberg, and M. E. Levenston. Analysis of cartilage matrix fixed charge density and three-dimensional morphology via contrast-enhanced microcomputed tomography. Proc. Natl. Acad. Sci. USA 103:19255–19260, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Palukuru, U. P., C. M. McGoverin, and N. Pleshko. Assessment of hyaline cartilage matrix composition using near infrared spectroscopy. Matrix Biol. 38:3–11, 2014.

    Article  CAS  PubMed  Google Scholar 

  125. Pattappa, G., H. K. Heywood, J. D. de Bruijn, and D. A. Lee. The metabolism of human mesenchymal stem cells during proliferation and differentiation. J. Cell. Physiol. 226:2562–2570, 2011.

    Article  CAS  PubMed  Google Scholar 

  126. Payne, K. A., H. H. Lee, A. M. Haleem, C. Martins, Z. Yuan, C. Qiao, X. Xiao, and C. R. Chu. Single intra-articular injection of adeno-associated virus results in stable and controllable in vivo transgene expression in normal rat knees. Osteoarthritis Cartilage 19:1058–1065, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Pellaumail, B., A. Watrin, D. Loeuille, P. Netter, G. Berger, P. Laugier, and A. Saied. Effect of articular cartilage proteoglycan depletion on high frequency ultrasound backscatter. Osteoarthritis Cartilage 10:535–541, 2002.

    Article  CAS  PubMed  Google Scholar 

  128. Plaas, A. H., S. Wong-Palms, P. J. Roughley, R. J. Midura, and V. C. Hascall. Chemical and immunological assay of the nonreducing terminal residues of chondroitin sulfate from human aggrecan. J. Biol. Chem. 272:20603–20610, 1997.

    Article  CAS  PubMed  Google Scholar 

  129. Potter, K., L. H. Kidder, I. W. Levin, E. N. Lewis, and R. G. Spencer. Imaging of collagen and proteoglycan in cartilage sections using Fourier transform infrared spectral imaging. Arthritis Rheum. 44:846–855, 2001.

    Article  CAS  PubMed  Google Scholar 

  130. Prologo, J. D., A. Pirasteh, N. Tenley, L. Yuan, D. Corn, D. Hart, Z. Love, H. M. Lazarus, and Z. Lee. Percutaneous image-guided delivery for the transplantation of mesenchymal stem cells in the setting of degenerated intervertebral discs. J. Vasc. Interv. Radiol. 23:1084–1088 e1086, 2012.

  131. Puetzer, J. L., J. N. Petitte, and E. G. Loboa. Comparative review of growth factors for induction of three-dimensional in vitro chondrogenesis in human mesenchymal stem cells isolated from bone marrow and adipose tissue. Tissue Eng. Part B 16:435–444, 2010.

    Article  CAS  Google Scholar 

  132. Puhakka, P. H., J. H. Ylarinne, M. J. Lammi, S. Saarakkala, V. Tiitu, H. Kroger, T. Viren, J. S. Jurvelin, and J. Toyras. Dependence of light attenuation and backscattering on collagen concentration and chondrocyte density in agarose scaffolds. Phys. Med. Biol. 59:6537–6548, 2014.

    Article  CAS  PubMed  Google Scholar 

  133. Qureshi, H. Y., J. Sylvester, M. El Mabrouk, and M. Zafarullah. TGF-beta-induced expression of tissue inhibitor of metalloproteinases-3 gene in chondrocytes is mediated by extracellular signal-regulated kinase pathway and Sp1 transcription factor. J. Cell. Physiol. 203:345–352, 2005.

    Article  CAS  PubMed  Google Scholar 

  134. Ramaswamy, S., M. C. Uluer, S. Leen, P. Bajaj, K. W. Fishbein, and R. G. Spencer. Noninvasive assessment of glycosaminoglycan production in injectable tissue-engineered cartilage constructs using magnetic resonance imaging. Tissue Eng. Part C Methods 14:243–249, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rieppo, L., S. Saarakkala, T. Narhi, J. Holopainen, M. Lammi, H. J. Helminen, J. S. Jurvelin, and J. Rieppo. Quantitative analysis of spatial proteoglycan content in articular cartilage with Fourier transform infrared imaging spectroscopy: critical evaluation of analysis methods and specificity of the parameters. Microsc. Res. Tech. 73:503–512, 2010.

    CAS  PubMed  Google Scholar 

  136. Roth, V., and V. C. Mow. The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age. J. Bone Joint Surg. (Am.) 62:1102–1117, 1980.

    CAS  Google Scholar 

  137. Rousseau, J., and P. Garnero. Biological markers in osteoarthritis. Bone 51:265–277, 2012.

    Article  CAS  PubMed  Google Scholar 

  138. Saarakkala, S., J. Toyras, J. Hirvonen, M. S. Laasanen, R. Lappalainen, and J. S. Jurvelin. Ultrasonic quantitation of superficial degradation of articular cartilage. Ultrasound Med. Biol. 30:783–792, 2004.

    Article  PubMed  Google Scholar 

  139. Sato, M., M. Ishihara, M. Kikuchi, and J. Mochida. A diagnostic system for articular cartilage using non-destructive pulsed laser irradiation. Lasers Surg. Med. 43:421–432, 2011.

    Article  PubMed  Google Scholar 

  140. Schinagl, R. M., D. Gurskis, A. C. Chen, and R. L. Sah. Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J. Orthop. Res. 15:499–506, 1997.

    Article  CAS  PubMed  Google Scholar 

  141. Schinagl, R. M., M. S. Kurtis, K. D. Ellis, S. Chien, and R. L. Sah. Effect of seeding duration on the strength of chondrocyte adhesion to articular cartilage. J. Orthop. Res. 17:121–129, 1999.

    Article  CAS  PubMed  Google Scholar 

  142. Schone, M., N. Mannicke, M. Gottwald, F. Gobel, and K. Raum. 3-d high-frequency ultrasound improves the estimation of surface properties in degenerated cartilage. Ultrasound Med. Biol. 39:834–844, 2013.

    Article  CAS  PubMed  Google Scholar 

  143. Schulz, R. M., and A. Bader. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur. Biophys. J. 36:539–568, 2007.

    Article  CAS  PubMed  Google Scholar 

  144. Setton, L. A., D. M. Elliott, and V. C. Mow. Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration. Osteoarthritis Cartilage 7:2–14, 1999.

    Article  CAS  PubMed  Google Scholar 

  145. Sharif, M., R. Granell, J. Johansen, S. Clarke, C. Elson, and J. R. Kirwan. Serum cartilage oligomeric matrix protein and other biomarker profiles in tibiofemoral and patellofemoral osteoarthritis of the knee. Rheumatology 45:522–526, 2006.

    Article  CAS  PubMed  Google Scholar 

  146. Silvast, T. S., J. S. Jurvelin, A. S. Aula, M. J. Lammi, and J. Toyras. Contrast agent-enhanced computed tomography of articular cartilage: association with tissue composition and properties. Acta Radiol. 50:78–85, 2009.

    Article  CAS  PubMed  Google Scholar 

  147. Smith, S. M., C. Shu, and J. Melrose. Comparative immunolocalisation of perlecan with collagen II and aggrecan in human foetal, newborn and adult ovine joint tissues demonstrates perlecan as an early developmental chondrogenic marker. Histochem. Cell Biol. 134:251–263, 2010.

    Article  CAS  PubMed  Google Scholar 

  148. Sobal, G., J. Menzel, and H. Sinzinger. Optimal 99mTc radiolabeling and uptake of glucosamine sulfate by cartilage. A potential tracer for scintigraphic detection of osteoarthritis. Bioconjugate Chem. 20:1547–1552, 2009.

    Article  CAS  Google Scholar 

  149. Sobal, G., J. Menzel, and H. Sinzinger. Optimal (99m)Tc radiolabeling and uptake of glucosamine sulfate by cartilage. A potential tracer for scintigraphic detection of osteoarthritis. Bioconjug. Chem. 20:1547–1552, 2009.

    Article  CAS  PubMed  Google Scholar 

  150. Sobal, G., J. Menzel, and H. Sinzinger. Uptake of 99mTc-labeled chondroitin sulfate by chondrocytes and cartilage: a promising agent for imaging of cartilage degeneration? Nucl. Med. Biol. 36:65–71, 2009.

    Article  CAS  PubMed  Google Scholar 

  151. Somoza, R. A., J. F. Welter, D. Correa, and A. I. Caplan. Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Eng. Part B Rev. 20:596–608, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Spahn, G., H. Plettenberg, E. Kahl, H. M. Klinger, T. Muckley, and G. O. Hofmann. Near-infrared (NIR) spectroscopy. A new method for arthroscopic evaluation of low grade degenerated cartilage lesions. Results of a pilot study. BMC Musculoskelet. Disord. 8:47, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Spahn, G., H. Plettenberg, H. Nagel, E. Kahl, H. M. Klinger, T. Muckley, M. Gunther, G. O. Hofmann, and J. A. Mollenhauer. Evaluation of cartilage defects with near-infrared spectroscopy (NIR): an ex vivo study. Med. Eng. Phys. 30:285–292, 2008.

    Article  PubMed  Google Scholar 

  154. Stockwell, R. A. Inter-relationship of articular cartilage thickness and cellularity. Ann. Rheum. Dis. 31:424, 1972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Su, H., F. G. Spinale, L. W. Dobrucki, J. Song, J. Hua, S. Sweterlitsch, D. P. Dione, P. Cavaliere, C. Chow, B. N. Bourke, X. Y. Hu, M. Azure, P. Yalamanchili, R. Liu, E. H. Cheesman, S. Robinson, D. S. Edwards, and A. J. Sinusas. Noninvasive targeted imaging of matrix metalloproteinase activation in a murine model of postinfarction remodeling. Circulation 112:3157–3167, 2005.

    Article  CAS  PubMed  Google Scholar 

  156. Sun, Y., J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. Saroufeem, K. K. Shung, and L. Marcu. Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy. Rev. Sci. Instrum. 80:065104, 2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Sun, Y., D. Responte, H. Xie, J. Liu, H. Fatakdawala, J. Hu, K. A. Athanasiou, and L. Marcu. Nondestructive evaluation of tissue engineered articular cartilage using time-resolved fluorescence spectroscopy and ultrasound backscatter microscopy. Tissue Eng Part C Methods 18:215–226, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sun, Y., E. Sobel, and H. Jiang. Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study. J. Biomed. Opt. 14:064002, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Sun, Y., E. S. Sobel, and H. Jiang. First assessment of three-dimensional quantitative photoacoustic tomography for in vivo detection of osteoarthritis in the finger joints. Med. Phys. 38:4009–4017, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  160. te Moller, N. C., H. Brommer, J. Liukkonen, T. Viren, M. Timonen, P. H. Puhakka, J. S. Jurvelin, P. R. van Weeren, and J. Toyras. Arthroscopic optical coherence tomography provides detailed information on articular cartilage lesions in horses. Vet. J. 197:589–595, 2013.

    Article  CAS  Google Scholar 

  161. Thomas, G. C., A. Asanbaeva, P. Vena, R. L. Sah, and S. M. Klisch. A nonlinear constituent based viscoelastic model for articular cartilage and analysis of tissue remodeling due to altered glycosaminoglycan–collagen interactions. J. Biomech. Eng. 131:101002, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Töyräs, J., T. Lyyra-Laitinen, M. Niinimaki, R. Lindgren, M. T. Nieminen, I. Kiviranta, and J. S. Jurvelin. Estimation of the Young’s modulus of articular cartilage using an arthroscopic indentation instrument and ultrasonic measurement of tissue thickness. J. Biomech. 34:251–256, 2001.

    Article  PubMed  Google Scholar 

  163. Toyras, J., J. Rieppo, M. T. Nieminen, H. J. Helminen, and J. S. Jurvelin. Characterization of enzymatically induced degradation of articular cartilage using high frequency ultrasound. Phys. Med. Biol. 44:2723–2733, 1999.

    Article  CAS  PubMed  Google Scholar 

  164. Trachtenberg, J. E., T. N. Vo, and A. G. Mikos. Pre-clinical characterization of tissue engineering constructs for bone and cartilage regeneration. Ann. Biomed. Eng. 43:681–696, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Vahdati, A., and D. R. Wagner. Finite element study of a tissue-engineered cartilage transplant in human tibiofemoral joint. Comput. Methods Biomech. Biomed. Eng. 15:1211–1221, 2011.

    Article  Google Scholar 

  166. van Arensbergen, J., B. van Steensel, and H. J. Bussemaker. In search of the determinants of enhancer-promoter interaction specificity. Trends Cell Biol. 24:695–702, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Viren, T., Y. P. Huang, S. Saarakkala, H. Pulkkinen, V. Tiitu, A. Linjama, I. Kiviranta, M. J. Lammi, A. Brunott, H. Brommer, R. Van Weeren, P. A. Brama, Y. P. Zheng, J. S. Jurvelin, and J. Toyras. Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage. J. Med. Eng. Technol. 36:185–192, 2012.

    Article  CAS  PubMed  Google Scholar 

  168. Viren, T., S. Saarakkala, J. S. Jurvelin, H. J. Pulkkinen, V. Tiitu, P. Valonen, I. Kiviranta, M. J. Lammi, and J. Toyras. Quantitative evaluation of spontaneously and surgically repaired rabbit articular cartilage using intra-articular ultrasound method in situ. Ultrasound Med. Biol. 36:833–839, 2010.

    Article  PubMed  Google Scholar 

  169. Wakitani, S., M. Nawata, A. Kawaguchi, T. Okabe, K. Takaoka, T. Tsuchiya, R. Nakaoka, H. Masuda, and K. Miyazaki. Serum keratan sulfate is a promising marker of early articular cartilage breakdown. Rheumatology 46:1652–1656, 2007.

    Article  CAS  PubMed  Google Scholar 

  170. Wakitani, S., T. Okabe, A. Kawaguchi, M. Nawata, and Y. Hashimoto. Highly sensitive ELISA for determining serum keratan sulphate levels in the diagnosis of OA. Rheumatology 49:57–62, 2010.

    Article  CAS  PubMed  Google Scholar 

  171. Walker, J. M., A. M. Myers, M. D. Schluchter, V. M. Goldberg, A. I. Caplan, J. A. Berilla, J. M. Mansour, and J. F. Welter. Nondestructive evaluation of hydrogel mechanical properties using ultrasound. Ann. Biomed. Eng. 39:2521–2530, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Wang, S. Z., Y. P. Huang, S. Saarakkala, and Y. P. Zheng. Quantitative assessment of articular cartilage with morphologic, acoustic and mechanical properties obtained using high-frequency ultrasound. Ultrasound Med. Biol. 36:512–527, 2010.

    Article  PubMed  Google Scholar 

  173. Wang, Q., Y. P. Zheng, H. J. Niu, and A. F. Mak. Extraction of mechanical properties of articular cartilage from osmotic swelling behavior monitored using high frequency ultrasound. J. Biomech. Eng. 129:413–422, 2007.

    Article  CAS  PubMed  Google Scholar 

  174. Weart, R. B., A. H. Lee, A. C. Chien, D. P. Haeusser, N. S. Hill, and P. A. Levin. A metabolic sensor governing cell size in bacteria. Cell 130:335–347, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Welter, J., L. Solchaga, and H. Baskaran. Chondrogenesis from human mesenchymal stem cells: Role of culture conditions. In: Stem cells and cancer stem cells: Therapeutic applications in disease and injury, edited by E. Hayat. Berlin: Springer, 2012, pp. 269–281.

    Chapter  Google Scholar 

  176. West, P. A., M. P. Bostrom, P. A. Torzilli, and N. P. Camacho. Fourier transform infrared spectral analysis of degenerative cartilage: an infrared fiber optic probe and imaging study. Appl. Spectrosc. 58:376–381, 2004.

    Article  CAS  PubMed  Google Scholar 

  177. Weston, A. D., R. A. Chandraratna, J. Torchia, and T. M. Underhill. Requirement for RAR-mediated gene repression in skeletal progenitor differentiation. J. Cell Biol. 158:39–51, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Whitney, G. A., K. Jayaraman, J. E. Dennis, and J. M. Mansour. Scaffold-free cartilage subjected to frictional shear stress demonstrates damage by cracking and surface peeling. J. Tissue Eng. Regen. Med. 2014. doi:10.1002/term.1925.

    PubMed  PubMed Central  Google Scholar 

  179. Whitney, G. A., H. Mera, M. Weidenbecher, A. Awadallah, J. M. Mansour, and J. E. Dennis. Methods for producing scaffold-free engineered cartilage sheets from auricular and articular chondrocyte cell sources and attachment to porous tantalum. BioResearch 1:157–165, 2012.

    CAS  Google Scholar 

  180. Wick, M., R. Haronen, D. Mumberg, C. Burger, B. R. Olsen, M. L. Budarf, S. S. Apte, and R. Muller. Structure of the human TIMP-3 gene and its cell cycle-regulated promoter. Biochem. J. 311(Pt 2):549–554, 1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Worster, A. A., B. D. Brower-Toland, L. A. Fortier, S. J. Bent, J. Williams, and A. J. Nixon. Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-beta1 in monolayer and insulin-like growth factor-I in a three-dimensional matrix. J. Orthop. Res. 19:738–749, 2001.

    Article  CAS  PubMed  Google Scholar 

  182. Wu, N., S. Opalenik, J. Liu, E. D. Jansen, M. G. Giro, and J. M. Davidson. Real-time visualization of MMP-13 promoter activity in transgenic mice. Matrix Biol. 21:149–161, 2002.

    Article  CAS  PubMed  Google Scholar 

  183. Xiao, J., and J. He. Multispectral quantitative photoacoustic imaging of osteoarthritis in finger joints. Appl. Opt. 49:5721–5727, 2010.

    Article  PubMed  Google Scholar 

  184. Xiao, J., L. Yao, Y. Sun, E. S. Sobel, J. He, and H. Jiang. Quantitative two-dimensional photoacoustic tomography of osteoarthritis in the finger joints. Opt. Express 18:14359–14365, 2010.

    Article  CAS  PubMed  Google Scholar 

  185. Xiao, J., Z. Yuan, J. He, and H. Jiang. Quantitative multispectral photoacoustic tomography and wavelength optimization. J X-ray Sci. Technol. 18:415–427, 2010.

    Google Scholar 

  186. Xie, L., A. S. Lin, K. Kundu, M. E. Levenston, N. Murthy, and R. E. Guldberg. Quantitative imaging of cartilage and bone morphology, reactive oxygen species, and vascularization in a rodent model of osteoarthritis. Arthritis Rheum. 64:1899–1908, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yang, B., H. Guo, Y. Zhang, L. Chen, D. Ying, and S. Dong. MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9. PLoS ONE 6:e21679, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Yin, Z., T. M. Schmid, T. K. Yasar, Y. Liu, T. J. Royston, and R. L. Magin. Mechanical characterization of tissue-engineered cartilage using microscopic magnetic resonance elastography. Tissue Eng. Part C Methods 20:611–619, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhang, C., W. Tang, and Y. Li. Matrix metalloproteinase 13 (MMP13) is a direct target of osteoblast-specific transcription factor osterix (Osx) in osteoblasts. PLoS ONE 7:e50525, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zheng, Y. P., S. L. Bridal, J. Shi, A. Saied, M. H. Lu, B. Jaffre, A. F. Mak, and P. Laugier. High resolution ultrasound elastomicroscopy imaging of soft tissues: system development and feasibility. Phys. Med. Biol. 49:3925–3938, 2004.

    Article  CAS  PubMed  Google Scholar 

  191. Zheng, Y. P., A. F. T. Mak, K. P. Lau, and L. Qin. An ultrasonic measurement for in vitro depth-dependent equilibrium strains of articular cartilage in compression. Phys. Med. Biol. 47:3165–3180, 2002.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Institute of Biomedical Imaging and Bioengineering under Award Number R01 EB20367-01. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors have no financial relationships that may cause a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. Mansour.

Additional information

Associate Editor Rebecca Kuntz-Willits oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, J.M., Lee, Z. & Welter, J.F. Nondestructive Techniques to Evaluate the Characteristics and Development of Engineered Cartilage. Ann Biomed Eng 44, 733–749 (2016). https://doi.org/10.1007/s10439-015-1535-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1535-9

Keywords

Navigation