Skip to main content

Advertisement

Log in

Effect of Intensified Decellularization of Equine Carotid Arteries on Scaffold Biomechanics and Cytotoxicity

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Decellularized equine carotid arteries (dEAC) are suggested to represent an alternative for alloplastic vascular grafts in haemodialysis patients to achieve vascular access. Recently it was shown that intensified detergent treatment completely removed cellular components from dEAC and thereby significantly reduced matrix immunogenicity. However, detergents may also affect matrix composition and stability and render scaffolds cytotoxic. Therefore, intensively decellularized carotids (int-dEAC) were now evaluated for their biomechanical characteristics (suture retention strength, burst pressure and circumferential compliance at arterial and venous systolic and diastolic pressure), matrix components (collagen and glycosaminoglycan content) and indirect and direct cytotoxicity (WST-8 assay and endothelial cell seeding) and compared with native (n-EAC) and conventionally decellularized carotids (con-dEAC). Both decellularization protocols comparably reduced matrix compliance (venous pressure compliance: 32.2 and 27.4% of n-EAC; p < 0.01 and arterial pressure compliance: 26.8 and 23.7% of n-EAC, p < 0.01) but had no effect on suture retention strength and burst pressure. Matrix characterization revealed unchanged collagen contents but a 39.0% (con-dEAC) and 26.4% (int-dEAC, p < 0.01) reduction of glycosaminoglycans, respectively. Cytotoxicity was not observed in either dEAC matrix which was also displayed by an intact endothelial lining after seeding. Thus, even intensified decellularization generates matrix scaffolds highly suitable for vascular tissue engineering purposes, e.g., the generation of haemodialysis shunts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Albers, F. J. Causes of hemodialysis access failure. Adv. Ren. Replace. Ther. 1:107–118, 1994.

    CAS  PubMed  Google Scholar 

  2. Badylak, S. F. Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response. Ann. Biomed. Eng. 42:1517–1527, 2014.

    Article  PubMed  Google Scholar 

  3. Ballyk, P. D., C. Walsh, J. Butany, and M. Ojha. Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses. J. Biomech. 31:229–237, 1998.

    Article  CAS  PubMed  Google Scholar 

  4. Barra, J. G., R. L. Armentano, J. Levenson, E. I. Fischer, R. H. Pichel, and A. Simon. Assessment of smooth muscle contribution to descending thoracic aortic elastic mechanics in conscious dogs. Circ. Res. 73:1040–1050, 1993.

    Article  CAS  PubMed  Google Scholar 

  5. Boeer, U., F. F. Buettner, M. Klingenberg, G. C. Antonopoulos, H. Meyer, A. Haverich, and M. Wilhelmi. Immunogenicity of intensively decellularized equine carotid arteries is conferred by the extracellular matrix protein collagen type VI. PLoS One 9:e105964, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Boer, U., A. Lohrenz, M. Klingenberg, A. Pich, A. Haverich, and M. Wilhelmi. The effect of detergent-based decellularization procedures on cellular proteins and immunogenicity in equine carotid artery grafts. Biomaterials 32:9730–9737, 2011.

    Article  PubMed  Google Scholar 

  7. Boer, U., C. Spengler, D. Jonigk, M. Klingenberg, C. Schrimpf, S. Lutzner, M. Harder, H. H. Kreipe, A. Haverich, and M. Wilhelmi. Coating decellularized equine carotid arteries with CCN1 improves cellular repopulation, local biocompatibility, and immune response in sheep. Tissue Eng. A 19:1829–1842, 2013.

    Article  Google Scholar 

  8. Boer, U., C. Spengler, M. Klingenberg, D. Jonigk, M. Harder, H. H. Kreipe, A. Haverich, and M. Wilhelmi. Cytotoxic effects of polyhexanide on cellular repopulation and calcification of decellularized equine carotids in vitro and in vivo. Int. J. Artif. Organs 36:184–194, 2013.

    Article  PubMed  Google Scholar 

  9. Cebotari, S., I. Tudorache, T. Jaekel, A. Hilfiker, S. Dorfman, W. Ternes, A. Haverich, and A. Lichtenberg. Detergent decellularization of heart valves for tissue engineering: toxicological effects of residual detergents on human endothelial cells. Artif. Organs 34:206–210, 2010.

    Article  PubMed  Google Scholar 

  10. Cigliano, A., A. Gandaglia, A. J. Lepedda, E. Zinellu, F. Naso, A. Gastaldello, P. Aguiari, P. De Muro, G. Gerosa, M. Spina, and M. Formato. Fine structure of glycosaminoglycans from fresh and decellularized porcine cardiac valves and pericardium. Biochem. Res. Int. 2012:979351, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Conklin, B. S., E. R. Richter, K. L. Kreutziger, D. S. Zhong, and C. Chen. Development and evaluation of a novel decellularized vascular xenograft. Med. Eng. Phys. 24:173–183, 2002.

    Article  CAS  PubMed  Google Scholar 

  12. Crapo, P. M., T. W. Gilbert, and S. F. Badylak. An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Dahl, S. L., J. Koh, V. Prabhakar, and L. E. Niklason. Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant. 12:659–666, 2003.

    Article  PubMed  Google Scholar 

  14. Diamantouros, S. E., L. G. Hurtado-Aguilar, T. Schmitz-Rode, P. Mela, and S. Jockenhoevel. Pulsatile perfusion bioreactor system for durability testing and compliance estimation of tissue engineered vascular grafts. Ann. Biomed. Eng. 41:1979–1989, 2013.

    Article  PubMed  Google Scholar 

  15. Edwards, C. A., and W. D. O’Brien, Jr. Modified assay for determination of hydroxyproline in a tissue hydrolyzate. Clin. Chim. Acta 104:161–167, 1980.

    Article  CAS  PubMed  Google Scholar 

  16. Faulk, D. M., C. A. Carruthers, H. J. Warner, C. R. Kramer, J. E. Reing, L. Zhang, A. D’Amore, and S. F. Badylak. The effect of detergents on the basement membrane complex of a biologic scaffold material. Acta Biomater. 10(1):183–193, 2013.

    Article  PubMed  Google Scholar 

  17. Gilbert, T. W., T. L. Sellaro, and S. F. Badylak. Decellularization of tissues and organs. Biomaterials 27:3675–3683, 2006.

    CAS  PubMed  Google Scholar 

  18. Green, E. M., J. C. Mansfield, J. S. Bell, and C. P. Winlove. The structure and micromechanics of elastic tissue. Interface Focus 4:20130058, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Heine, J., A. Schmiedl, S. Cebotari, M. Karck, H. Mertsching, A. Haverich, and K. Kallenbach. Tissue engineering human small-caliber autologous vessels using a xenogenous decellularized connective tissue matrix approach: preclinical comparative biomechanical studies. Artif. Organs 35:930–940, 2011.

    Article  PubMed  Google Scholar 

  20. Huang, A. H., and L. E. Niklason. Engineering of arteries in vitro. Cell. Mol. Life Sci. 71:2103–2118, 2014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Kapadia, M. R., D. A. Popowich, and M. R. Kibbe. Modified prosthetic vascular conduits. Circulation 117:1873–1882, 2008.

    Article  PubMed  Google Scholar 

  22. Kasimir, M. T., G. Weigel, J. Sharma, E. Rieder, G. Seebacher, E. Wolner, and P. Simon. The decellularized porcine heart valve matrix in tissue engineering: platelet adhesion and activation. Thromb. Haemost. 94:562–567, 2005.

    CAS  PubMed  Google Scholar 

  23. Kennealey, P. T., N. Elias, M. Hertl, D. S. Ko, R. F. Saidi, J. F. Markmann, E. E. Smoot, D. A. Schoenfeld, and T. Kawai. A prospective, randomized comparison of bovine carotid artery and expanded polytetrafluoroethylene for permanent hemodialysis vascular access. J. Vasc. Surg. 53:1640–1648, 2011.

    Article  PubMed  Google Scholar 

  24. Keynton, R. S., M. M. Evancho, R. L. Sims, N. V. Rodway, A. Gobin, and S. E. Rittgers. Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study. J. Biomech. Eng. 123:464–473, 2001.

    Article  CAS  PubMed  Google Scholar 

  25. Koenneker, S., O. E. Teebken, M. Bonehie, M. Pflaum, S. Jockenhoevel, A. Haverich, and M. H. Wilhelmi. A biological alternative to alloplastic grafts in dialysis therapy: evaluation of an autologised bioartificial haemodialysis shunt vessel in a sheep model. Eur. J. Vasc. Endovasc. Surg. 40:810–816, 2010.

    Article  CAS  PubMed  Google Scholar 

  26. Lichtenberg, A., S. Cebotari, I. Tudorache, G. Sturz, M. Winterhalter, A. Hilfiker, and A. Haverich. Flow-dependent re-endothelialization of tissue-engineered heart valves. J. Heart Valve Dis. 15:287–293, 2006; (discussion 293-284).

    PubMed  Google Scholar 

  27. Marlatt, K. L., A. S. Kelly, J. Steinberger, and D. R. Dengel. The influence of gender on carotid artery compliance and distensibility in children and adults. J. Clin. Ultrasound 41:340–346, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Mulisch, M., and U. Welsch (eds.). Romeis – Mikroskopische Technik. Heidelberg: Spektrum Akademischer Verlag Heidelberg, 2010.

    Google Scholar 

  29. Murase, Y., Y. Narita, H. Kagami, K. Miyamoto, Y. Ueda, M. Ueda, and T. Murohara. Evaluation of compliance and stiffness of decellularized tissues as scaffolds for tissue-engineered small caliber vascular grafts using intravascular ultrasound. ASAIO J. 52:450–455, 2006.

    Article  CAS  PubMed  Google Scholar 

  30. Pellegata, A. F., M. A. Asnaghi, I. Stefani, A. Maestroni, S. Maestroni, T. Dominioni, S. Zonta, G. Zerbini, and S. Mantero. Detergent-enzymatic decellularization of swine blood vessels: insight on mechanical properties for vascular tissue engineering. Biomed. Res. Int. 2013:918753, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Perez, D. R., F. F. Damberger, and K. Wuthrich. Horse prion protein NMR structure and comparisons with related variants of the mouse prion protein. J. Mol. Biol. 400:121–128, 2010.

    Article  CAS  PubMed  Google Scholar 

  32. Qing, L. L., H. Zhao, and L. L. Liu. Progress on low susceptibility mechanisms of transmissible spongiform encephalopathies. Dongwuxue Yanjiu 35:436–445, 2014.

    PubMed  Google Scholar 

  33. Roy-Chaudhury, P., M. El-Khatib, B. Campos-Naciff, D. Wadehra, K. Ramani, M. Leesar, M. Mistry, Y. Wang, J. S. Chan, T. Lee, and R. Munda. Back to the future: how biology and technology could change the role of PTFE grafts in vascular access management. Semin. Dial. 25:495–504, 2012.

    Article  PubMed  Google Scholar 

  34. Roy, S., P. Silacci, and N. Stergiopulos. Biomechanical properties of decellularized porcine common carotid arteries. Am. J. Physiol. Heart Circ. Physiol. 289:H1567–H1576, 2005.

    Article  CAS  PubMed  Google Scholar 

  35. Santoro, D., F. Benedetto, P. Mondello, N. Pipito, D. Barilla, F. Spinelli, C. A. Ricciardi, V. Cernaro, and M. Buemi. Vascular access for hemodialysis: current perspectives. Int. J. Nephrol. Renovasc. Dis. 7:281–294, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Schmidt, C. E., and J. M. Baier. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials 21:2215–2231, 2000.

    Article  CAS  PubMed  Google Scholar 

  37. Shoemaker, P. A., D. Schneider, M. C. Lee, and Y. C. Fung. A constitutive model for two-dimensional soft tissues and its application to experimental data. J. Biomech. 19:695–702, 1986.

    Article  CAS  PubMed  Google Scholar 

  38. Silver, F. H., I. Horvath, and D. J. Foran. Viscoelasticity of the vessel wall: the role of collagen and elastic fibers. Crit. Rev. Biomed. Eng. 29:279–301, 2001.

    Article  CAS  PubMed  Google Scholar 

  39. Sonoda, H., S. Urayama, K. Takamizawa, Y. Nakayama, C. Uyama, H. Yasui, and T. Matsuda. Compliant design of artificial graft: compliance determination by new digital X-ray imaging system-based method. J. Biomed. Mater. Res. 60:191–195, 2002.

    Article  CAS  PubMed  Google Scholar 

  40. Tillman, B. W., S. K. Yazdani, L. P. Neff, M. A. Corriere, G. J. Christ, S. Soker, A. Atala, R. L. Geary, and J. J. Yoo. Bioengineered vascular access maintains structural integrity in response to arteriovenous flow and repeated needle puncture. J. Vasc. Surg. 56:783–793, 2012.

    Article  PubMed  Google Scholar 

  41. Tschoeke, B., T. C. Flanagan, S. Koch, M. S. Harwoko, T. Deichmann, V. Ella, J. S. Sachweh, M. Kellomaki, T. Gries, T. Schmitz-Rode, and S. Jockenhoevel. Tissue-engineered small-caliber vascular graft based on a novel biodegradable composite fibrin-polylactide scaffold. Tissue Eng. A 15:1909–1918, 2009.

    Article  CAS  Google Scholar 

  42. Verbeke, F. H., M. Agharazii, P. Boutouyrie, B. Pannier, A. P. Guerin, and G. M. London. Local shear stress and brachial artery functions in end-stage renal disease. J. Am. Soc. Nephrol. 18:621–628, 2007.

    Article  PubMed  Google Scholar 

  43. Wang, X. N., C. Z. Chen, M. Yang, and Y. J. Gu. Implantation of decellularized small-caliber vascular xenografts with and without surface heparin treatment. Artif. Organs 31:99–104, 2007.

    Article  PubMed  Google Scholar 

  44. Weston, M. W., K. Rhee, and J. M. Tarbell. Compliance and diameter mismatch affect the wall shear rate distribution near an end-to-end anastomosis. J. Biomech. 29:187–198, 1996.

    Article  CAS  PubMed  Google Scholar 

  45. Wilhelmi, M. H., and A. Haverich. Materials used for hemodialysis vascular access: current strategies and a call to action. Graft 6:6–15, 2003.

    Article  Google Scholar 

  46. Williams, C., J. Liao, E. M. Joyce, B. Wang, J. B. Leach, M. S. Sacks, and J. Y. Wong. Altered structural and mechanical properties in decellularized rabbit carotid arteries. Acta Biomater. 5:993–1005, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Wilshaw, S. P., J. Kearney, J. Fisher, and E. Ingham. Biocompatibility and potential of acellular human amniotic membrane to support the attachment and proliferation of allogeneic cells. Tissue Eng. A 14:463–472, 2008.

    Article  CAS  Google Scholar 

  48. Zhao, Y., S. Zhang, J. Zhou, J. Wang, M. Zhen, Y. Liu, J. Chen, and Z. Qi. The development of a tissue-engineered artery using decellularized scaffold and autologous ovine mesenchymal stem cells. Biomaterials 31:296–307, 2010.

    Article  PubMed  Google Scholar 

  49. Zhou, J., O. Fritze, M. Schleicher, H. P. Wendel, K. Schenke-Layland, C. Harasztosi, S. Hu, and U. A. Stock. Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials 31:2549–2554, 2010.

    Article  CAS  PubMed  Google Scholar 

  50. Zou, Y., and Y. Zhang. Mechanical evaluation of decellularized porcine thoracic aorta. J. Surg. Res. 175:359–368, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

(a) There were no contributions that do not justify authorship (b) We thank S. Reuss and M. Harder for the conductance of the Picogreen assay and R. Abedian for his help with the sGAG determination. (c) The work was funded by the “Else Kroener-Fresenius foundation”, Germany. (d) No conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Böer.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10439_2015_1328_MOESM1_ESM.tif

Supplemental figure S1: Custom-made burst chamber device comprised of an aluminum chamber with a central hole through which the pressure is applied on the sample and with a side entrance for the monitoring of the pressure. Supplementary material 1 (TIFF 737 kb)

10439_2015_1328_MOESM2_ESM.tif

Supplemental figure S2: Mechanical tester for suture retention strength (SRT) test with fixed decellularized equine carotid artery under low tension (A) or near rupture (B). Supplementary material 2 (TIFF 1071 kb)

10439_2015_1328_MOESM3_ESM.tif

Supplemental figure S3: Custom-made device for circumferential compliance determination. A: Compliance chamber with fixed decellularized equine carotid artery. B: Pressure unit for the generation of pulses with a small piston driven by a linear motor. Supplementary material 3 (TIFF 900 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böer, U., Hurtado-Aguilar, L.G., Klingenberg, M. et al. Effect of Intensified Decellularization of Equine Carotid Arteries on Scaffold Biomechanics and Cytotoxicity. Ann Biomed Eng 43, 2630–2641 (2015). https://doi.org/10.1007/s10439-015-1328-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1328-1

Keywords

Navigation